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Abstract—Social systems are increasingly being modelled as
complex networks, and the interactions and decision making of
individuals in such systems can be modelled using game theory.
Therefore, networked game theory can be effectively used to model
social dynamics. Individuals can use pure or mixed strategies in
their decision making, and recent research has shown that there is
a connection between the topological placement of an individual
within a social network and the best strategy they can choose
to maximise their returns. Therefore, if certain individuals have
a preference to employ a certain strategy, they can be swapped
or moved around within the social network to more desirable
topological locations where their chosen strategies will be more
effective. To this end, it has been shown that to increase the
overall public good, the cooperators should be placed at the hubs,
and the defectors should be placed at the peripheral nodes. In
this paper, we tackle a related question, which is the time (or
number of swaps) it takes for individuals who are randomly placed
within the network to move to optimal topological locations which
ensure that the public utility satisfies a certain utility threshold.
We show that this time depends on the topology of the social
network, and we analyse this topological dependence in terms
of topological metrics such as scale-free exponent, assortativity,
clustering coefficient, and Shannon information content. We show
that the higher the scale-free exponent, the quicker the public utility
threshold can be reached by swapping individuals from an initial
random allocation. On the other hand, we find that assortativity has
negative correlation with the time it takes to reach the public utility
threshold. We find also that in terms of the correlation between
information content and the time it takes to reach a public utility
threshold from a random initial assignment, there is a bifurcation:
one class of networks show a positive correlation, while another
shows a negative correlation. Our results highlight that by designing
networks with appropriate topological properties, one can minimise
the need for the movement of individuals within a network before
a certain public good threshold is achieved. This result has obvious
implications for defence strategies in particular.

Index Terms—complex networks, mixing patterns, assortativity
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I. INTRODUCTION

Game theory is the science of strategic decision making
among autonomous players[1]. Evolutionary game theory is the
adaptation of game theory in populations of players, where
game theory is used to explain the evolution of strategies over
time[2]. Most real-world populations are not ‘well-mixed’, but
are restricted by spatial limitations. Thus, the players distributed
in heterogeneous networks provide an interesting premise to
study evolutionary games[3], [4]], [5]. Social structures of people
have often been modelled as complex networks. While the ‘well-
mixed” or random models have been used earlier to characterise
social interactions, the heterogeneous nature of some interac-
tions, whereby some individuals have more links than others, is
nowadays taken into account[6], [3]. It has been found that most
social networks are, in fact, the so-called ‘scale-free’ networks,
with power law degree distributions[7]], [8]]. As such, networked
game theory has come into prominence, to analyse the payoff
of individuals in such scenarios. Meanwhile, public good games
have begun to be studied as a branch of games where the
individual pay-offs for agents are less important than the overall
payoff (utility) for the community[], [9]. A good real-world
example of this is the welfare systems that are in place in
many financial environments to safeguard the financially weaker
individuals or organisations.

Normally, evolution within the context of game theory or
networked game theory is taken to mean that individual agents
adopt or evolve strategies with the view of maximising their
individual payoff. This is indeed often the case: each deer in the
forest adapts strategies to maximize its lifetime and food intake,
and such strategies are passed on to the next generation, either
by observation or as some kind of genetic memory. However,
environmental pressures may also dictate collective evolution,
whereby each individual tries to adapt the best strategy for
the collective gain of the society, as opposed to its individual
gain. For example, a society of deers may be forced to evolve
collective strategies to better survive against a pride of lions. The
strategy adapted by each deer, then, is dictated not so much by
its individual gain but the collective gain of the society. It is easy
to find similar examples in the human society as well[4].

Research in networked game theory has already shown that
for the maximization of ‘public good’, the strategies chosen by
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individual agents should depend on their topological placement
in the network([[10], [[11]], [12], [13]]. For example, in a population
of agents playing the Prisoners Dilemma game, it has been shown
that the hubs should play the cooperation strategy whereas the
peripheral nodes should play the Defection strategy to maximise
the total network utility[10]], [12], [14], [15}], [L6]. Similarly,
recent work[[11]], [17] has considered several pairs of strategy,
and in a scenario where agents playing both strategies are present
in the population, identified which agents (or which strategy)
should occupy the hubs and which agents (or which strategy)
should occupy the peripheral nodes for maximization of network
utility. Such a result makes sense in scenarios where individual
players or agents have fixed strategies which they cannot change,
but can swap positions with neighbours, so that the nodes in the
network will appear to be changing their strategies (by swapping
players or agents which occupy these nodes) while the overall
percentage of players playing a certain strategy in the network
will not change. In this work, we are similarly interested in
pairs of strategies, but rather than deciphering which strategies
should occupy the hubs and which strategies should occupy the
peripheral nodes, which has already been established by previous
work, we are interested in understanding how long it takes for the
agents playing these strategies to move to the optimised locations
for maximum public good, from a random initial assignment.
In particular, we set a public good threshold, and we swap
agents playing fixed strategies to neighbouring nodes, and we
measure the number of swaps it takes for the network to reach
the desired public good threshold. Then we analyse how this
number depends on the topological parameters of the network,
such as assortativity, clustering coefficient, scale-free exponent,
and information content. That is, we analyse the influence of the
topological parameters in determining how quickly an acceptable
public good threshold can be reached. A question could be
posed as to why this public threshold can not be achieved by
individual agents changing their strategies, rather than moving
their positions within the network. However, in many scenarios,
it is difficult to teach or convince individuals to change their
decision making process. For example, in a defence scenario
where a group of people defend a structure with an underlying
topological pattern, the leader of the defenders often tries to
strengthen the defences with their limited resources by placing
appropriately skilled people at appropriate locations, rather than
training people at each location to help them develop skills
needed at that location. At the same time, it is often imperative
that no position can be left unmanned for a relatively long time,
so that movement of personnel is only possible by moving them
to nearby positions. For instance, consider a scenario where a
group of soldiers defend a connected system of fortifications,
or a group of villagers defend their village against an external
foe like bandits or wild animals. Often, the alarm goes off at an
unexpected time so that people have to rush to the closest position
and man it, so that the initial assignment is random. After this,
the leader can only move people by swapping them with people
who are immediately next to them in the predefined defensive
system, so that no position is left unoccupied for a long time.
Nevertheless, the leader may want to move the strongest people
to the front, and the smartest people to the rear or the centre of
the fortification where they may attend a strategic discussion, by
affecting one swap at a time. In this way, it is possible to increase
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the overall effectiveness (payoff or utility) of the defence, without
actually changing the abilities of individuals or the strategies each
individual employ or the organisational structure (topology), and
achieve a global outcome (better defence) by relying only on
local movements (swaps of people). This is the scenario we try
to mimic in this work.

This paper is organised as follows. In the next section, we
elaborate on the game theoretical background used in this work.
Also, we give a brief introduction into topological features of
networks. In the following section, we describe our methodology
and experimental set-up. In the next section we describe our
results and observations. The last section contains the conclusions
and indications towards future work.

II. BACKGROUND
A. Evolutionary Game Theory

Evolutionary game theory is an outcome of the adaptation of
game theory into the field of evolutionary biology[2].

1) Iterated Prisoners Dilemma: Prisoner’s dilemma is a game
that is found in classical game theory[18]], which describes the
‘dilemma’ faced by two prisoners, caught by authorities in the
act of committing a lesser crime but suspected to have committed
a more serious crime, and being separately offered incentives to
confess to the greater crime and thus betray their colleague. Given
the payoff matrix in Table. 1, the inequality 77 > R > P > §
should be satisfied in a prisoner’s dilemma game. In other words,
in the prisoner’s dilemma game, the highest combined payoff is
obtained by the players when both players cooperate. However, if
one player cooperates while the other defects, the defector would
obtain a higher payoff individually, while the cooperator gets the
least payoff. The dilemma is that the Nash Equilibrium of this
game, which occurs when both players defect, does not provide
the optimum payoff for either player.

In Iterated Prisoner’s Dilemma(IPD), the prisoner’s dilemma
game is iterated over many timesteps, over a population of
players[/16]. Each player would play a single iteration of the game
with each of their neighbours in each time-step. Iterated pris-
oner’s dilemma game is widely used to model the autonomous
decision making behaviour of self-interested players. It has been
demonstrated that the topology of the network is significant in the
evolution of cooperation of strategies in the IPD game[16], [[15],
[6]. For example, when the iterated prisoner’s dilemma game
is played by players using pure cooperation and pure defection
strategies, cooperation evolves to be the dominant strategy in a
population of players that are distributed in a scale-free topology.
In this work, we use Iterated Prisoners Dilemma, with payoffs
given by Table [I} in our simulation experiments.

2) Memory-one strategies in iterative games: During an it-
erated game, each player can play each of the ‘pure’ strategies
available to them, or a subset thereof, according to a certain
probability distribution. Such a combination of strategies over
time according to a probability distribution is called a ‘mixed
strategy’. In fact, a pure strategy in an iterative game can be
regarded as a special case of mixed strategy, where a certain
strategy is always chosen (with probabality of 1.0), and the other
strategies are chosen with probability zero. The probability of
choosing a particular strategy for a particular round could be
decided from the ‘memory’ of the player about the past actions
of themselves and their opponents, such as the strategies they
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TABLE I: Payoff matrix for the Prisoner’s Dilemma, as used for simulation experiments in this paper. Note that (' > R > P > 5).

PLAYER 1: Cooperate

PLAYER 1: Defect

PLAYER 2: Cooperate
PLAYER 2: Defect

R (3),R@3)
T 5),S ©

S0, T3
P (1), P (D

and their opponents used in previous iterations. Such a mixed
strategy is called a finite-memory strategy, where the current
mixed strategy would be dependent on n number of historical
strategy selections between the two players involved [11]. A
memory-one strategy is a finite-memory strategy, where n = 1:
that is, only the actions of the players in the previous iteration
determine the strategy selection of a player.

For example, if two players are playing IPD and employ-
ing a memory-one strategy, this strategy could be denoted
(p1, p2, p3, p4) whereby p; denotes the probability of cooperation
if both players cooperated in the previous round, p, denotes the
probability of cooperation if the player in question cooperated
while the other defected in the previous round, ps denotes the
probability of cooperation if the player in question defected while
the other cooperated in the previous round, and p4 denotes the
probability of cooperation if the player in question defected while
the other also defected in the previous round. It is elementary to
note that the probabilities of defection do not need to be noted
explicitly, and would be given by (1 —p1,1—po, 1 —p3, 1 —py).
Therefore, a strategy (1,1,1,1) by player A would imply that the
Player A would cooperate with player B, irrespective of their
strategies during the previous encounter between Player A and
B. Similarly, (0,0,0,0) would represent that player A would defect
regardless of the strategies of players A and B in the last round.

By varying the probabilities of cooperation depending on the
actions of the players in the previous encounter, it is possible
to define any number of mixed ‘memory-one’ strategies. Some
of the well-known memory-one strategies include the Pavlov
strategy (1,0,0,1), Tit-for-Tat strategy (1,0,1,0), and the General
Cooperator (0.935, 0.229, 0.266, 0.42) strategy. Pavlov is some-
times also called ‘win-stay-lose-shift’, because, as can be seen
from the cooperation probabilities, the player in question sticks
to the action of the previous round in this round only if both
players cooperated in the last round or this player defected while
the other cooperated in the last round, in both of which scenarios
this player would have not lost out in the last round. On the other
hand, if this player cooperated while the other defected in the
last round, this player would have lost out (that is, gained payoff
less than the other player), therefore in this round this player
defects: similarly, if they both defected in the last round, it is
also considered a ‘loss’, according to the payoff matrix in Table
1, in the sense that the payoff would have been relatively low,
so this time this player tries cooperation. So, essentially, Pavlov
represents a strategy where the player sticks to the previous
strategy if the payoff in the last round was relatively good (5 or 3
according to Table 1), and shifts strategy if the payoff in the last
round was relatively poor (1 or 0 according to Table 1). Tit-for-
Tat, is another well knowns strategy where a player would only
cooperate if the opponent cooperated in the previous interaction.
General Cooperator is the evolutionarily dominating strategy that
evolved at low mutation rates from a pure cooperator (1,1,1,1)
as demonstrated by Iliopoulos et al[20]], [21]. In our simulation
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experiments in this paper, we make use of Pure Cooperator
(1,1,0,0), General Cooperator (0.935, 0.229, 0.266, 0.42), Pure
Defector (0,0,0,0), General Defector (0.42, 0.266, 0.229, 0.935),
Tit-for-Tat (1,0,1,0) and Pavlov (1,0,0,1) mixed strategies.

3) public good games and public good thresholds: Typi-
cally, games are taken to be played for the self-interest of the
players. On the other hand, the concept of public-good (some-
times also written ‘public-goods’) games has recently gained
prominence[S]], where the emphasis is not on the individual
gains of agents but the overall payoff for the society or system.
Therefore, in a public-good game, players cooperate, willingly or
otherwise, not to maximise their individual gains but to maximise
the payoff of the system as a whole. Prisoners Dilemma is by
definition a competitive game, but here we treat iterated Prisoners
Dilemma as a public good game, focussing on the total payoff
for the system (network) on each iteration and how to maximise
it, rather than maximising individual payoffs. We define a ‘public
good threshold’ as a value of total network payoff, above which
we assume that the expected ’public good’ has been achieved.
In our experiments below, the public good threshold is set at 1.5
per player per game, unless otherwise stated.

B. Games on networks

Games played on the so-called ‘well-mixed’ populations can
be contrasted to games played on networks, where each player
can only play games with their immediate neighbours and thus
the opportunity to play games is restricted by the topologyl[6],
[3]. Networked game theory has progressed significantly since
the introduction of the so-called small-world and scale-free
topologies into the more general field of network theory more
than a decade ago[8l], [7]. Thus, several studies have looked
at how network topology influences the stability of strategies,
for Prisoners Dilemma and other games[17], [1O], [12], [15]. In
Prisoners dilemma, even though defectors always win against
cooperators and the Nash equilibrium is when both players
defect, in networked games it was shown that cooperation was a
stable strategy, and a portion of cooperating agents were able to
persist indefinitely in the system[6].

In the present work, we also attempt to understand the role of
topology in game dynamics, except that we focus on the time
(or number of strategy swaps) taken to achieve a certain public
good threshold and how this time is influenced by topology,
rather than focussing on evolutionary stability of strategies or the
topological placement of strategies necessary for public good,
as some previous studies have done [6], [S], [11]. Therefore,
it is necessary for us to briefly define the topological concepts
used in this study. In the following subsections, we provide some
definitions for key network science concepts that we will use.

1) Scale-free networks: Scale-free networks are ubiquitous in
real world, and for this reason often used as model networks in
networked game theory[6]. In a scale-free network, the degree
distribution follows a power law, and the probability of a node
to have a degree of k is given by[8]], [22] pr = Ak~ where
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A is a constant and ~ is the power law exponent (also referred
as scale-free exponent). A higher value of v results in a degree
distribution with a steeper slope, while a lower value of v results
in a flatter degree distribution.

2) Clustering Coefficient: The clustering coefficient of a node
represents the ratio between the number of links between the
neighbours of that node, and the number of all possible links
between those neighbours. It is defined as[23]:

2y;
ki(ki — 1)

where k; is the degree of node ¢, and y; is the number of edges
between the neighbours of node i. The network clustering coef-
ficient C is defined as the average of the clustering coefficients
of all nodes in that network.

3) Assortativity: Assortativity measures the tendency for
nodes to connect to similar nodes, and degree assortativity
quantifies this tendency when similarity is defined in terms of
node degree. As a Pearson correlation it ranges from 1.0 (for
perfect assortativity) to -1.0 ( for perfect disassortativity), and is
defined (for undirected networks) as:

ey

C; =

MY ik = (MY, 53+ R
MUY 3G+ R — MY, 3G + k)P
where M is the number of edges, and j;, k; are the degrees of
the vertices at either end of the i*" edge, with i = 1...M.
4) Information Content: In information theory, mutual in-
formatiormrmeasures the amount of information that can be

obtained about one random variable by observing another random
variable[24].

@
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where P(z,y) is the joint probability distribution of X and
Y. P(z) and P (y) are the marginal probability distribution
functions of X and Y. In the context of a network, the Shannon
information 7(q) of the network topology, also called the mutual
information of a network, can be expressed as[7]:

3
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j=0
where the e; ), and g are as defined above in section [[I-B3]
The Shannon information is a relative quantity that expresses
the amount of information that is hidden within the network
topology. Therefore, a relatively homogenous graph has a lower
information content, while a more heterogeneous graph, such as
a scale-free network, has a higher information content.

In this paper, we use the scale-free exponent 7, network clus-
tering coefficient C, degree assortativity r as well as information
content I(q) of networks, as defined above, as the topological
metrics to quantify the topology of a network, and study the
relationship between these metrics and the time it takes for a
network where IPD is played to reach payoff thresholds.

III. METHODOLOGY

Here we describe how the simulation experiments were set-up
and run.
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A. Generating the scale-free networks

We generated scale-free networks with size N = 1500 nodes
and M = 2250 links, thus having an average degree of three. To
do so, we first generated the desired degree distribution, which is
given by pr = Ak™", where A and y are parameters. Since the
degree distribution is a probability distribution which should sum
up to one, A can be computed for a given v and average degree
(which, in this case, is three). Once the degree distribution is
generated, the 1500 nodes were generated and assigned degrees
according to the degree distribution, and then randomly wired
according to their degrees. Since the average degree of 3.0 was
used in the calculation of A, this process always results in M =
2250 links, as desired (subject to finite-state effects which may
result in a few more or few less edges).

We first generated a range of scale-free networks with a range
of ~ values from 2.0 to 3.0, since this is the range of scale-free
exponents on most naturally occurring scale-free networks[7].
We also generated scale-free networks with -~y 1.0, since
this special case can sometimes reveal interesting observations,
as we will see below. Then, we generated networks with a
range of clustering coefficients, by fixing the v and for each ~
generating several scale-free networks so that the randomness
in the link generation process results in a range of network
clustering coefficients. In order to generate graph with varying
levels of assortativity, we first generated a connected scale-free
graph for a particular « then applied degree-preserving rewiring
(DPR) which changes assortativity[25] (also known as the Xulvi-
Brunet—Sokolov algorithm) until we reach the desired value.

The Xulvi-Brunet—Sokolov algorithm as implemented by us,
which can be used to increase the assortativity of a network
while preserving the degree distribution (and thus, the scale-free
exponent, ) can be described briefly as follows. It is an iterative
algorithm, and on each iteration, two pairs of linked nodes
(i.e, nodes at the ends of two non-adjacent links) are randomly
selected. Then these four nodes are sorted by degree. If the two
nodes with higher degrees are already connected (which also
means the two nodes with lower degrees are already connected),
the iteration is completed. If not, then the two links between
the two selected pairs are deleted, and instead, two new links
are made, one between the two nodes with the highest degrees,
and the other between the two nodes with the lowest degrees.
Thus, the degree of each node is preserved, and the iteration
is completed. This process is repeated until the desired level of
assortativity is reached. The process is illustrated in Fig. il

The process of decreasing the assortativity is similar. The only
difference, at each iteration, is to delete the links between the two
pairs of nodes selected, and then pair up the highest degree node
to the lowest degree node and the other two nodes, forming two
new links. Thus, assortativity can be reduced while the degree
distribution and scale-free exponent are preserved.

We vary the information content, or mutual information, of
networks in the following manner. Consider equation 4| again,
from which we can see that the information content depends
on the two distributions, e;; and ¢;qx. As equation [4| shows,
the maximal information content could be obtained when the
product g; * q; diverges the most from e; ;. In contrast, minimal
information I(g) is attained when ¢; * g5 and e;; diverge the
least. Therefore, we varied the information content by varying
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Increase

d=7 d=13 d=7 d=13
¢=5 o=2 ‘<‘,:| d=5 d=2

Decrease

Fig. 1: The Xulvi-Brunet—Sokolov algorithm. To increase assor-
tativity, at each iteration two pairs of nodes (that is, two links)
are randomly selected, and after these two links are deleted, two
new links are created, one between the nodes with the highest
degrees (d = 13 and d = 7 in the example), another between
the nodes which have the lowest degrees (d = 5 and d = 2
in the example). This iterative process increases the assortativity
of a scale-free network while preserving the degree distribution,
and thus, preserving the scale-free exponent. The reverse process
results in the reduction of assortativity.

the e; ; for a particular pre-defined degree distribution of a scale-
free network (which means the expected degree distribution g,
and scale-free exponent -, are also fixed), while ensuring that
>-ejr = 1. Once a particular e;j, distribution is obtained, we
ik

1jlsed it to ‘wire’ the given number of nodes in the scale-free
network, and then we repeated the same process for the same
gy distribution but for a different e; 3, distribution. This process
resulted in a range of scale-free networks which all had the same
degree distribution and expected degree distribution (and thus, the
same scale-free exponent gamma), while differing in the mutual
information (information content) of the topology.

This process is illustrated in Fig. |3} for the sample network
illustrated in Fig. 2l The divergence between ¢; * q; and e;
is represented by the vertical distance between the two surfaces
shown in figure [3l While the blue surface remains unmoving,
the red surface can be moved (subject to the constraint that the
distribution should sum up to unity), resulting in the divergence
between ¢; * ¢ and e;j varying. Thus, by ‘moving’ the red
surface we can vary the information content of a network. Note
however that the sample network in Fig. |2l is much smaller than
the networks used in our experiments, which all had N = 1500
nodes and M = 2250 links.

Fig. 2: Example network to illustrate the concept of divergence
between distributions ¢; * ¢ and e; j, as shown in Fig.
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IV. RESULTS

Here we present the results of our simulation experiments.
We analysed how the time to reach a certain public good utility
threshold varies against various topological attributes. This time
was measured by counting the number of ‘strategy swaps’ needed
between neighbouring nodes to reach the given public good
threshold (in brief, swaps to reach threshold, or hereafter STRT).
Each node was allowed to swap its strategy only with one of
its immediate neighbours in the network topology. Each swap
was performed by randomly selecting a link, and swapping the
strategies of the nodes on either end of the link, in such a way
that the strategy which needs to be at the hubs for maximum
public good (as identified in [L1], [17]) would be placed at the
node with the higher degree: thus, the swap was not performed
if this rule is already satisfied for the given pair of nodes. For
example, if a particular link connected a node with degree 3
playing Cooperator and another node with degree 7 playing
Defector, these strategies were swapped, so that the Cooperator
strategy would end up with the higher-degreed node. If the
strategy assignment was the other way round to begin with, then
the strategies were not swapped. Thus, the STRT represented
the level of effort needed before the public utility threshold
was reached. Four topological attributes were considered, namely
i) scale-free exponent v ii) network clustering coefficient iii)
network assortativity iv) network mutual information. In the
figures presented below, each datapoint in each figure represents
an average of 20 simulation runs on the same network, and the
public good threshold is set at 1.5 per player per game with
respect to Table 1, unless otherwise stated.

A. STRT against Scale-free exponent

The results for STRT against scale-free exponent are shown
in figures ll [l [ and Bl below. In general, STRT displays
a linear negative correlation with scale-free exponent. That is,
as the scale-free exponent increases, the number of strategy
swaps needed before the network reaches a certain public good
threshold decreases; that is, the threshold can be reached quicker.
This result is true across all pairs of strategies that we considered,
and regardless of the actual value of the public good threshold,
as long as the threshold is sufficiently high. For example, Fig.
l4] shows the case where cooperator and defector strategies are
swapped in a prisoners dilemma game, and the public utility
threshold was set at 1.5 per player per game on average. Fig.
[5] shows the ‘general cooperator’ strategy, as described before,
being swapped with ‘general defector’ strategy, while Fig. le]
shows ‘Pavlov’ strategy being swapped with ‘Tit-for-tat’ strategy,
and Fig. [7| shows ‘Pavlov’ strategy being swapped with ‘General
defector’ strategy all for varying public utility thresholds. The
results, it can be seen, are very similar: in all cases, there is a
very linear and negative correlation between the STRT and the
scale-free exponent .

B. STRT against Clustering Coefficient

We compared STRT against clustering coefficient of the scale-
free networks that we studied, and did not find any particular
correlation. This is shown in figures 8l o] and respectively. As
before, each figure corresponds to a particular pair of strategies:
Coordinator and Defector, General Coordinator and General
Defector, Pavlov and Tit-for-Tat. It is clear that regardless of
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qj * gk values

all)

g2}
ai3)

m 0-0.05 m0.05-0.1 m0.1-0.15 m0.15-0.2 0.2-0.25

ej,k values

] 2

m0-0.05 m0.050.1 m0.1-0.15

0.15-0.2

Fig. 3: The (a) g; * g values and the (b) ¢; ;. for the network shown in Fig. |2} Note that if the distribution represented by the red
surface is varied while the blue surface is not varied, the network in Fig. 2] will be rewired, and the information content of the
resulting network will change, however the degree distribution will remain unchanged.

the pair of strategies which are being swapped by the nodes,
increasing or decreasing the clustering coefficient of the network
topology does not have a marked impact in how quickly the
desired public good threshold can be reached.

CvD Swaps to reach average 1.5 payoff/game

200

180

Number of Swaps

120

100

1.8 2 2.2 2.4 2.6 2.8 3

Gamma

Fig. 4: STRT against scale-free exponent « for nodes swapping
Cooperator and Defector strategies.

GC vs GD swaps to reach 1.0 payoff/game
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Fig. 5: STRT against scale-free exponent « for nodes swapping
General Cooperator and General Defector strategies.

C. STRT against Assortativity

We then compared STRT against the assortativity of the scale-
free networks that we studied. Here we found that there is a
positive correlation, but the correlation is exponential rather than
linear, as figures and[14] show. The correlation is not much
affected by the scale-free exponent of the scale-free networks, as
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Pavlov vs TFT swaps to reach 1.55 payoff/ game
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Fig. 6: STRT against scale-free exponent v for nodes swapping
Pavlov and Tit-for-Tat strategies.
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Fig. 7: STRT against scale-free exponent ~ for nodes swapping
Pavlov and General Defector strategies.

comparing figures [[1] and [12] reveal (y = 2.8 and v = 2.6 reveal
similar trends). The correlation however, becomes comparatively
weaker when comparatively lower public good thresholds are
used, or when mixed strategies (such as Pavlov and General
Cooperator) instead of pure strategies are swapped, as comparing
figure |1 1| with figure |14] indicates.

These trends could be explained by the fact that in scale-
free networks with dissassortativity (that is, negative assortativity
values), star-structures are often present, which allow strategies at
the peripheral nodes to ‘reach’ the hubs relatively quickly, when
swapped. So, for example, a lot of nodes with degree equal to
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140

130
120 f,
1o f°

100 e

MNumber of swaps

80

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Clustering Coefficient

Fig. 8: STRT against network clustering coefficient C' for nodes

swapping Cooperator and Defector strategies. Here v = 2.8.
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Fig. 9: STRT against network clustering coefficient C' for nodes
swapping General Cooperator and General Defector strategies.
Here v = 2.8.
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Fig. 10: STRT against network clustering coefficient C' for nodes
swapping Pavlov and Tit-for-Tat strategies. Here v = 2.8.
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Fig. 11: STRT against assortativity r for nodes swapping Cooper-
ator and Defector strategies. Here v = 2.8. Public good threshold
=15
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Fig. 12: STRT against assortativity r for nodes swapping Cooper-
ator and Defector strategies. Here v = 2.6. Public good threshold
=15
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Fig. 13: STRT against assortativity C' for nodes swapping Co-
operator and Defector strategies. Each datapoint represents an
average of 20 simulation runs on the same network with v = 2.8.
Public good threshold = 1.5 per game

one could reach a node with degree equal to a hundred, say, in a
single swap. On the other hand, when assortativity is higher, this
by definition means the degree difference between adjacent nodes
is lower, therefore, when swapped, strategies from the peripheral
nodes must ‘travel’ longer (go through more swaps) before they
reach the hubs. Since, in any pair of strategies, where one strategy
is more desirable at the hubs for the public good of the network,
and initially all strategies are randomly assigned, disassortativity
overall facilitates quicker movement of the desirable strategy
towards the hubs, and thus, in disassortative networks the public
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Fig. 14: STRT against assortativity r for nodes swapping Pavlov
and General Cooperator strategies. Here v = 2.8. Public good
threshold = 1.2
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Fig. 15: STRT against assortativity C' for nodes swapping Pavlov
and General Cooperator strategies. Each datapoint represents an
average of 20 simulation runs on the same network with v = 2.8.
Public good threshold = 1.5 per game
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Fig. 16: STRT against mutual information for nodes
Cooperator and Defector strategies. Here v = 1.0.
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Fig. 17: STRT against mutual information for nodes swapping
Cooperator and Defector strategies. Here v = 1.0.
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Fig. 18: STRT against mutual information for nodes swapping
Cooperator and Defector strategies. Here v = 2.2.
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Fig. 19: STRT against mutual information for nodes swapping
Cooperator and Defector strategies. Here v = 2.8.

good threshold can be achieved with fewer swaps.

D. STRT against Information Content

We next focus on information content (or mutual information)
of networks, as defined before, against the STRT. Our results are
shown in figures[17] [18]and[19], and all trends show an interesting
bifurcation. That is, in each figure, one class of networks shows
an increasing trend, while another class shows a decreasing trend,
even though both classes belong to scale-free networks with the
same scale-free exponent. This bifurcation happens regardless of
the value of the scale-free exponent, even though we may notice,
curiously, that when v = 1, this bifurcation is symmetric, and
for all other values of +, this bifurcation is asymmetric.

This phenomena could be explained by considering equation
and figure |3| and noting that there are two ways in which the e;
distribution could deviate from the quantity g; * q: upward on
average, or downward on average. Since the mutual information
essentially measures the variation of e; ; distribution from the gy,
distribution, for any given g, distribution, there will be two e;
distributions which will result in the same mutual information:
one that varies ‘upwards’ (on average) and another which varies
‘downward’ (on average). We postulate that the two classes of
networks present in the figures and correspond to
these two types of e;; distribution for a given g, with the
‘upward variation’ corresponding to the increasing trend and the
‘downward variation’ corresponding to the decreasing trend.

It is interesting to note, therefore, that while an increase in
the scale-free exponent helps the network reach its public utility
threshold quicker, an increase in assortativity has the opposite
effect: it results in the network reaching its public utility threshold
more slowly. Clustering coefficient seems to have no impact
on how quickly a network reaches its public utility threshold,
while an increase in topological information content helps a
class of scale-free networks and hinders another class of scale-
free networks in reaching the public utility threshold. It would
be enlightening, as part of future research, to analyse what
topological features distinguish these two classes of networks.

V. CONCLUSIONS

In networked game theory, pairs of strategies could be com-
pared in terms of their topological placement, and this usually
results in the broad conclusion that for optimum public good, one
strategy needs to occupy the hubs and another strategy needs to
occupy the peripheral nodes. This becomes even more important
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in scenarios where a certain fixed proportion of players play each
strategy, and while these players can be swapped topologically,
the proportion can not be changed. A real world example is a
defensive system which is predefined topologically and when
under attack, all of its positions need to be occupied at all times,
and the number of defenders and their resources are fixed, but
certain defenders or their instruments are most effective at certain
positions or locations. The leadership of the defence can therefore
only try to rearrange the allocation of people to positions by
swapping the defenders locally.

It has already been identified in literature, when strategies
are considered pairwise in networks, which strategies need to
occupy the hubs for optimal public good. For example, it has
been shown that when cooperation plays defection, cooperators
need to be at the hubs for optimal public good. In this paper,
we considered the related question of reaching a certain public
good threshold, which could correspond to a certain level of
performance / break-even profit / level of effectiveness within
a system. We analysed how the topology of the social network
affects how quickly this threshold can be reached by swapping
players who play fixed strategies along topological links, from an
initial random assignment. Theoretically, this is also equivalent to
the question of players remaining in fixed locations and swapping
strategies with their neighbours, though as it is hard to think why
players might want to swap rather than adopt strategies, it is
more realistic to consider players (for example, defenders) who
are fixated in their strategies (for example, instruments or skill
sets), but willing to swap positions with their neighbours in the
organisational (for example, defensive) topology.

We considered four topological properties: scale-free exponent
(since most real world social networks are scale-free), clustering
coefficient, assortativity and topological information content. We
found that clustering coefficient does not affect the number
of swaps it takes to achieve a certain utility threshold. Scale-
free exponent shows a decreasing trend, so that the higher it
is, the quicker the threshold can be reached from a random
initial assignment. Assortativity on the other hand shows an
increasing trend, so that the higher the assortativity, the longer it
takes to reach a public utility threshold from a random initial
assignment. We found that in terms of mutual information,
there are two classes of scale-free networks, where in one class
higher information content makes it quicker to reach the utility
threshold, whereas in another class the opposite is true.

Our results can be used to design social systems where a
certain network payoff threshold can be quickly reached by
swapping players among topological locations, regardless of
the initial assignment. For example, defence experts can design
defensive fortifications and topologies in ways that reduce the
need to swap defenders who have fixed skills / strategies, before
the defensive structure reaches a certain performance threshold.
This is particularly interesting since a global outcome (increased
effectiveness of defense) is achieved by undertaking local actions
(swapping defenders among neighbouring defensive positions). It
is our future research direction to identify and experiment with
more practical contexts where such results will be useful.
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