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Abstract—Deaf and mute people face various difficulties in
daily activities due to the communication barrier caused by the
lack of Sign Language knowledge in the society. Many researches
have attempted to mitigate this barrier using Computer Vision
based techniques to interpret signs and express them in natural
language, empowering deaf and mute people to communicate
with hearing people easily. However, most of such researches
focus only on interpreting static signs and understanding dy-
namic signs is not well explored. Understanding dynamic visual
content (videos) and translating them into natural language is
a challenging problem. Further, because of the differences in
sign languages, a system developed for one sign language cannot
be directly used to understand another sign language, e.g., a
system developed for American Sign Language cannot be used
to interpret Sri Lankan Sign Language. In this study, we develop
a system called Utalk to interpret static as well as dynamic signs
expressed in Sri Lankan Sign Language. The proposed system
utilizes Computer Vision and Machine Learning techniques to
interpret sings performed by deaf and mute people. Utalk is
a mobile application, hence it is non-intrusive and cost-effective.
We demonstrate the effectiveness of the our system using a newly
collected dataset.

Keywords—Sinhala Sign Language, Computer Vision, Machine
Learning

I. INTRODUCTION

Hearing is one of the most important human senses which

helps individuals to connect with the outside world in their ev-

eryday lives. Unfortunately, not every person is gifted with the

hearing ability. According to the researchers, over 360 million

people in the world have been affected by hearing impairment

[1]. The main obstacle for people with hearing impairments

is the communication with ordinary people. Generally, a

sign language is used by deaf and mute people for their

communication. However, most of the hearing people neither

can understand the sign language nor can use it. Because of

this communication barrier deaf-mute people sometimes fail

to express their feelings and views as well as fail to understand

the feelings and views of others. Therefore, both deaf-mute as

well as hearing people face many difficulties in carrying out

their essential day to day activities with each other. Ultimately,

it will cause such disabled persons to be isolated from society.

There are many highly talented people suffering from

hearing and speech impairments. It would be unfortunate if

having such impairments becomes an obstacle to achieve their

goals. Moreover, adding them to the workforce will help

to improve the socio-economic development of the country.

Therefore, it is imperative to assist them in making their lives

more successful and providing a way to join the country’s

primary workforce. Many researches have proposed to utilize

Computer Vision techniques to interpret signs performed by

deaf and mute people and express them in natural language,

so that hearing people can understand. However, most of such

researches focus on interpreting static signs. Understanding

dynamic signs is not well explored. Understanding dynamic

visual content (videos) and translating them into natural lan-

guage is a challenging problem. Further, there is no universal

sign language for deaf-mute people, and different countries

have their own sign language systems [2]. Hence, a system

developed for one sign language cannot be directly used to

understand another sign language, e.g., a system developed to

interpret American Sign Language cannot be used to interpret

Sri Lankan Sign Language. Furthermore, existing advanced

systems to convert signs to text are not readily adaptable or

affordable. For example, some of them are needed to have

specific external devices such as data gloves [3]. Addressing

these issues, in this work, we introduce Utalk: a Sri Lankan

Sign Language Converter.

Utalk is a sign language converter specially trained for the

Sinhala language that converts videos into text. In contrast

to existing solutions, Utalk comes as a mobile application

providing users a more cost-effective and easy to use system.

Another unique advantage of the proposed system is that it can

interpret both static and dynamic signs. The system takes a

video of the user while performing sign language as the input,

extract frame segments, and then remove the background of

those frames using image processing techniques. Those pre-

processed frames/images are classified as static or dynamic

sign frames and then fed into two separate machine learning

models named static sign classifier and dynamic sign clas-
sifier. The output of these two models is going through a

language model. Finally, the mobile app outputs the converted

text. To understand the problem domain well, we get the

assistance from Rathmanalana Deaf and Blind School.

Due to the unavailability of datasets for Sinhala Sign

Language, we collected a new dataset. We evaluate the ef-

fectiveness of the proposed system using this new dataset and

the results indicate that Utalk can correctly identify static as978-1-7281-8412-8/20/$31.00 c©2020 IEEE

31

20
20

 2
nd

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 A

dv
an

ce
m

en
ts

 in
 C

om
pu

tin
g 

(IC
AC

) |
 9

78
-1

-7
28

1-
84

12
-8

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IC
AC

51
23

9.
20

20
.9

35
73

00

Authorized licensed use limited to: SLIIT - Sri Lanka Institute of Information Technology. Downloaded on January 31,2022 at 05:45:34 UTC from IEEE Xplore.  Restrictions apply. 



well as dynamic Sinhala Language sigs.

The structure of the paper is organized as follows. Section 2

describes the related work in the literature. Section 3 describes

the process of generating Sinhala text by taking video as the

input. Section 4 illustrates the experiments carried out in this

study and the results generated from the experiments, and

finally, section 6 concludes the discussion with our future plans

and works.

II. RELATED WORK

There are two kinds of researches related to sign language

translations. One kind translates sign language into written or

spoken language [3], e.g. using a specific device to capture

sign languages gestures. The other kind translates written or

spoken language into sign language, e.g. using a 3d avatar [4].

Sing to natural language translations can be broadly catego-

rized as image-based approaches and sensor-based approaches

[5]. Examples for sensor-based approaches are using Kinect

sensor [6] or using Leap Motion controller [7]. Sensor-based

approaches require the user to wear separate devices. Hence,

they can be intrusive and/or expensive. In contrast, the method

proposed in this paper uses an image-based approach which

non-intrusive and cheap.

Image-based approaches considers several features such as

rotation, shape, angle, hand movements, and pixels. Several

feature extraction methods have been used to find features and

Artificial intelligence methods are used to classify those fea-

tures. The most highlighted area of this paper is to review the

key finding of the comparison of feature extraction methods

of other existing systems based on the classification accuracy.

Prasad et al. [8] propose an approach for recognizing Indian

sign language using fusion-based edge operators. There are

several stages in their approach such as the pre-processing,

segmentation, feature extraction and pattern recognition. In

the pre-processing and segmentation stages they have used

dilatation and erosion techniques to isolate hand and head

portions from the image. However, unlike our study, they only

used a simple background video as the input, which has made

it easier to clearly identify hand and head movements.

Tolentino et al. [9] proposed static sign language recognition

using deep learning. They developed that system to assist as

a learning tool for starters in sign language that involves hand

detection. That system also used skin-color based modeling

technique and images fed into the model using Convolution

Neural Network (CNN) for classification. This system gained

average testing classification result of 93.67% which alphabet

recognition, number recognition and static word recognition

[9].

Regarding dynamic sign identification, [10] use Leap Mo-

tion techniques to classify dynamic signs in Arabic Sign

Language. It consists of two main methods. First they im-

plemented a model using K-Nearest Neighbour [11], Artifi-

cial Neural Network [12] and Support Vector Machine [13]

algorithms. Then gives the single majority output using clas-

sification of each and every frame. Dynamic Time Wrapping

[14] is used in the second method. This method measures and

identifies the optimal alignment of two given sequences. DTW

have the ability to identify the most similar classes in testing

set with compared to training set.

Another research area which recognize action using dy-

namic image networks [15], which contains CNNs [16] to

classify dynamic images. As they used single dynamic image

to represent each video using CNN platform. It splits a video

multiple sub-sequences and encode each and every one as a

dynamic image which achieves better classification accuracy

than a single dynamic image. Long Short-Term Memory

[17] and Recurrent Neural Network [18] applied as well in

capturing general changes within a short period of time. RNNs

function is to analyze video segments and encode the frame

segmentation information to their memory cells.

We understand that sign language identification techniques

are updated continuously by analyzing these related works.

Also, we find out that the use of a mobile device for sign

language identification is infrequent. Therefore by considering

all of those previous work and taking these work as our

basis, we agreed to develop a system to identify Sinhala sign

language using a mobile phone. Because Sinhala sign language

converters are very rare, and it will be a great help for the Sri

Lankan deaf people to communicate with ordinary people.

III. METHODOLOGY

Our proposed model, Utalk consists of several sub modules.

Figure 1 illustrates the overview of the proposed model.

Given the video feed from the camera, Utalk first extracts

frames from the video. As a pre-processing step, we remove

the background from each frame. Next, we classify frame

sequence as static or dynamic for further processing. The

Static Classifier identify static signs whereas the Dynamic
Classifier identifies dynamic signs. Finally, results from sign

classifiers are fed into the Language model to generate text

based on input video.

Following sections provide more details about each sub

module.

Fig. 1. Overview of the Proposed Model
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Fig. 2. An example for before and after background removal

A. Extracting Frames and Removing Background

In this section, we describe the process of extracting frame

segments from the input video and removing background of

those frames using image processing techniques. First, Utalk

reads video and then extract frames. For this, we use the

OpenCv VideoCapture object. A video frame is nothing but

an image. Each extract frame/image is processed separately in

following sub modules.

Frames/images extracted as described above may not only

contain the person of interest but also contains many other

background objects. Using such images directly for our further

processing will cause to reduce accuracy as the system might

fail to identify hand gestures precisely. Therefore, as a pre-

processing step to enhance system performance, we remove

the background from the extract images/frames. Figure 2

shows a background removed image.

As the first step of the background removal, extracted

images are converted into a grayscale images. Then we used

thresh-holding method to perform edge detection correctly,

such that, if pixel value changes from a larger value, consid-

ered it as an edge. Dilation and erosion operations are applied

to make the detected edges more sharp [8] allowing us to

identify edges of a person entity in an image accurately. Next,

we extract the largest contour and consider it as the person and

the rest of the image as the background. Finally, the identified

background of the generated frame is filled with a plain color

mask. Now the image only consists of a person entity and

plain color background. Therefore, the background will not

be focused and the accuracy of the system is increased.

B. Detecting Features for Static and Dynamic Sign Identifica-
tion

The main task of Detecting Features for Static and Dynamic

Sign Identification is to divide background removed frames to

labeled static and dynamic frames. When background removed

frames inserted into the Utalk system, we need to take the

pixel difference from two subsequent frames by using a

Python OpenCV. Then we save the images and take them

into an image histogram. An image histogram is a graphical

representation of the pixel distribution of the image [19]. In

image histogram, we plot the number of pixels of the image

against its tonal values. By this, we can further detect and

identify edges correctly, and also this is essential for the

system’s accuracy. After taking histogram values from each

frame, we need to calculate the sum of the histograms as a float

value, which is the entropy of the frames. An image’s entropy

Fig. 3. Frame Labeled as Static

Fig. 4. Frame Labeled as Dynamic

means corresponding states of intensity level that individual

pixels can adopt [20]. By measuring entropy, we can decide

which pixels are continuously spreading through each frame

and which areas are highlighted due to the frame’s appearance.

Taking entropy value provides better compression between

two frames/images [21]. Using this technique, we can identify

that these frames are similar or not. Based on these identified

similar frames, we go for the next step.

Subtle body movements that cannot easily be detected by

the human eye are called micro-movements. When a person

performs a sign gesture, there can micro-movements that the

person does, but it is not a part of that particular movement.

Therefore, we have to ignore those and take the movements

with a more extended time duration in our required frames.

These longer time duration frames can be static signs or

dynamic signs. If it is a static sign, the movement will stop

with fewer frames, and movement will be in a transition period

until it goes for another movement. Then we can assume it as

a transition from one static frame to another static frame. If

the frames’ movement is continuously changing, that means

the person is still performing some gesture. These frames we

can take as dynamic frames. According to that after getting

the image entropy, add a loop to compare each frame and

set a default entropy value as the place to separate the static

and dynamic segments in the frame.In case, added 10 as the

default entropy value. If the entropy value is less than 10,

have considered it a static frame, and if the entropy value is

greater than 10, have considered it a dynamic sign. However,

within these dynamic frames, there can be transition frames.

By removing these transition frames, we can separate the

dynamic frames. Then these static and dynamic frames are

labeled and sent to the static and dynamic classifiers in the

Utalk system. Figure 4 shows the final output for the Static

and Dynamic sign identification.

C. Static Sign Classification

We had identified, there are two types of signs have in the

Sinhala Sign Language. The first one is the static sign which

is not any movement and the second one is dynamic signs
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which having movements. So these signs should be identified

when the deaf man shows to the app.

Static sign classification [22] is one of an essential com-

ponent of the Utalk system, which mainly affects the output.

Because every meaningful sentence has at least one or more

static signs to support the idea like numbers, letters, and

symbols. In some cases, one sign is sufficient to give the

whole sentence meaning in SLSL. So this module will develop

the classifier to classify static sings by using visual features

generated by the previous member.

Data set collection for static SLSL was done by taking

photos with the help of a camera. After that images were au-

tomatically cropped and converted to 70 * 70 pixels grayscale

samples using python. cv2.imread [23] function was used to

convert images to grayscale and cv2.resize function used for

resizing the images. Each class contained between 400 and

600 images.

A convolution neural network [24] is used for developing

the static sign classifier. CNN networks basically consist of

three main parts; Conv, Pooling, and Dense layers. Conv

layers consist of filters and feature maps. The Pooling layer

reduces the feature obtained in the previous Conv layer. The

Dense layer is the normal feed-forward network layer. The

problem with the first model built using these key layers is low

validation accuracy rates. Because of over-fitting (excessive

adaptation) and high variance. In that case, we used max

pooling, Relu, Sigmoid, SoftMax layers with basic layers for

that model building process. Moreover, we were rich enough to

check the accuracy rate by switching layers and using more

than one layer. We ended that model with a Softmax layer.

Because it gives the predicted probabilities for each class

label.as well as Each class was trained individually over the

network.

The data set was divided into two segments as training

and testing using the algorithm to see the performance of the

model. It is 80% for training and 20% for testing of the total

data set. The Network was implemented and trained via Keras

and TensorFlow using a Graphics Processing Unit. We had

used 100 epochs with a 200 batch size for train the model

and images ware resized to 70*70, 1. Finally, we had used

the object detector to predict the static sign and it also used a

pre-processed model like mentioned above.

D. Dynamic Sign Classification

Dynamic sign classification’s primary function is to identify

the differences and changes between every frame segment.

The dynamic sign classification model is implemented using

convolutional neural network (CNN) classification algorithm

which classifies dynamic signs using input and output layers

as well as multiple hidden layers. Dynamic sign classification

is done through a particular process. The process as follows,

First we have to read and store frames of videos in train

data set. There are set of videos included into one folder which

stand for one recognized dynamic sign. Like wise ,there are

sets of video folders included for our selected dynamic signs.

We call those video folders as classes. We have to frame the

videos,when creating the data set. We add all these frames into

one single csv file, which separate file names with labeled

classes. After that load the image and keep target size as

(224,224,3). Then we should convert the data set into an array.

In order to do that we should normalize the pixel values and

append the images into train image list.

Next main objective is convert the train data set into a

numpy array. The function of a numpy array is to convert

the 3 Dimentional array into a 1 Dimentional array. As we are

using CNN, that creating a numpy array is a must. It generates

a numeric array.

Then we have to split the data set into trained and test data

set. We allocate 80% for training and 20% for testing. We

give high percentage for training to increase the accuracy of

the model.

Next creating dummies of target variables. As this model

is a video classification one, we have to initialize the training

and testing data sets using dummy values.

Then we create a base model. Here we used VGG 16 base

model which is used for video classification for some more.

It has pre-trained using a generic data set. It increases the

accuracy of the model.

Then reshaping the training and testing data set. Reshape

it into a single dimention, converts the array into single

dimention which has video one side and file name other.

After that normalize the pixel values. It means load all pixel

values and take the maximum and minimum of pixel values.

We give this range to the model,then model doesn’t considerate

about other ranges(outliers). It helps to increase the model

accuracy.

Then define the model architecture. It is done throug adding

dense layers to the model. Model consist of 4 hidden layers.

Input shape is 61440 array and output shape is 8 because, here

we consider only 8 dynamic signs with 8 video classes.

Next step is to define a function to save the weights of the

model using Keras. Then compile the model which we have

initially defined. Next we train the model.

Finally, save the model into a h5 file. When we make

predictions, we take the trained h5 file. We train the model

only once.

Sign conversion into text happens in real-time. The user

capture video with the mobile app, and the video will be

uploaded to the back-end application on server. After that,

the video clip will be split into frames, and each frame’s

background is removed. These frames will separate into static

and dynamic frames with the numbered sequence they were

in the original video. Then static frames are put through

the image classifier, and the output is recorded with the

frame number. Dynamic frames are put through the dynamic

classifier, and the output is recorded with the frame number.

The outputs recorded with the frame number arranged in order

of the original video frame numbers and redundancies are

removed. Then remaining words that are identified from the

classifiers are sent back to the mobile application as the request

response. In the mobile application, once the response arrives
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TABLE I
CLASSIFICATION ACCURACY FOR STATIC AND DYNAMIC SIGN

CLASSIFICATION

Static sign Dynamic signs
0.97 0.95

TABLE II
ACCURACY COMPARISON WITH AND WITHOUT BACKGROUND

with background without background
Static 0.67 0.97

Dynamic 0.80 0.95

from the back-end with the translation, it is displayed as a

text.

IV. EXPERIMENTS AND RESULTS

Due to unavailability of datasets for Sinhala Sign Language,

we collected a dataset with the participation of nine volunteers

to evaluate the proposed Utalk system. Nine volunteers con-

sisted of two females and seven males. Further, volunteers

were selected such that three age groups (kid, young and

middle-aged) are covered. The participants were asked to per-

form four static sings and eight dynamic signs. The four static

signs are Ayubowan (A Sri Lankan greeting), House, Love

and School. The eight dynamic signs are He or She, Hello,

Here, Me, Name, Teacher and You. Each user were asked

to perform each sign for three times, different background

locations and different lightning conditions. Hence, each sign

have 27 images and video segments. Sample images from the

collected dataset are shown in 5.

Fig. 5. Sample images from the collected dataset

We evaluate Utalk systems using 4 metrics, classification

accuracy, precision, recall and F1 score. Table I shows

classification accuracy values for static and dynamic sign

classification. We can see that Utalk can perform well in both

static and dynamic sign classification.

We remove background of the images as a pre-processing

step. Table II shows the impact of background removal. Results

indicates that background removal and separation of static and

dynamic signs leads to better classification accuracy in both

static and dynamic sign classification.

Further, collection of large datasets for sign language is

very expensive. However, to successfully train a deep learning

model we need a large dataset. Hence, in this work we perform

data augmentation to increase the number of images in our

TABLE III
COMPARISON OF CLASSIFICATION ACCURACY WITH AND WITHOUT DATA

AUGMENTATION

Without data augmentation With data augmentation
Static 0.27 0.97

Dynamic 0.60 0.95

TABLE IV
PRECISION, RECALL AND F1 SCORE VALUES FOR STATIC SIGN

CLASSIFICATIONS

Precision Recall F1 Score
Ayubowan 0.95 1.00 0.97

Love 1.00 0.91 0.95

House 1.00 1.00 1.00

School 0.98 1.00 0.99

TABLE V
PRECISION, RECALL AND F1 SCORE VALUES FOR DYNAMIC SIGN

CLASSIFICATIONS USING CNN

Precision Recall F1 Score
He or She 1.00 0.95 0.98

Hello 0.94 0.92 0.93

Here 0.89 1.00 0.94

Me 1.00 1.00 0.95

Name 1.00 0.74 0.83

Teacher 0.92 1.00 0.96

You 0.77 0.74 0.75

Fig. 6. Mobile app outputs

dataset. We use flipping, rotation, translation and zooming

as data augmentation methods. In Table III we compare

impact of data augmentation on classification accuracy. Results

demonstrate that data augmentation greatly helps to improve

classification accuracy.

In Table IV and V we show precision and recall and F1

score each static and dynamic sign respectively. As we can

see in In Table IV, Utalk achieves high precision and recall

values (over 0.90) for all the static signs that it was evaluated

for. Further, Table V shows that Utalk can also achieve higher

precision and recall values for dynamic signs. These results
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indicate that the proposed Utalk system can be successfully

used for both static and dynamic sign identification.

Final output from the Utalk mobile app for static

”Ayubowan” sign and dynamic ”Hello” sign, static ”House”

and dynamic ”Teacher” signs are shown in the Figure 6.

V. CONCLUSION

In this paper, we introduced a system called UTalk which

can interpret static as well as dynamic signs expressed in

Sri Lankan Sign Language. The proposed system accepts a

video feed as the input, uses computer vision and machine

learning techniques to interpret the signs observed in the

video and finally translates interpreted signs into text. Due

to lack of datasets of Sinhala Sign language, we collected

a new dataset in this work. Experimental results on the

collected dataset indicate that Utalk can correctly identify

static as well as dynamic Sinhala Signs. Further, Utalk is

implemented as a mobile application. Hence, Utalk is non-

intrusive and cheaper.In future work, we will translate Sinhala

Sign Language gestures into voice in addition to text making

Utalk more user-friendly.
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