
KANNANGARA ET AL. IMPACT OF REFACTORING – PNCTM; VOL. 2, JAN 2013

60

 Impact of Refactoring on Code Quality

Improvement in Software Maintenance
S. H. Kannangara and W. M. J. I Wijayanayake

Abstract — Quality software are robust, reliable and easy to maintain, and therefore reduces the cost of software

maintenance. But as software systems undergo modifications, improvements and enhancements to cope with evolving

requirements, quality of software can be decreased. Refactoring is one of the methods which have been applied to improve

software quality. Supporters claim that it helps increasing the quality of the code, making it easier to understand, modify and

maintain. However, there is only limited empirical evidence of such assumption. Therefore it is sometimes difficult to judge

whether the refactoring in question should be applied or not without knowing the effect accurately. The purpose of this study

is to validate/invalidate the claims that refactoring improves software quality. Experimental research approach is used to

achieve the main objectives of this study which is to quantitatively measure the impact of refactoring on code quality

improvement in software maintenance. Ten refactoring techniques were evaluated through the experiment in order to access

Resource Utilization, Changeability and Analysability which are ISO sub Quality factors. The result for analysability shows a

slight advantage for refactoring, but the assumption of increased analysability does not answered from the analysability test.

Concerning changeability, both the result and hypothesis test shows disadvantage for refactored code. The analysis of

resource utilization also provides hints on disadvantages of the refactoring technique like increase resource consumption in

terms of obtained disk space by source files.

Keywords — Refactoring, ISO 9126, Software Maintenance, Analysability, Changeability, Resource Utilization

I. INTRODUCTION

Today Computing is everywhere and society depends

on it. With the rapid development of computing, software

systems are also being developed very rapidly. Because of

that it can be seen that very successful software systems

are developed everywhere in the world.

Successful software systems can be changed over time.

A predominant proportion of changes are to meet ever-

changing user needs in a real-world environment. As the

software is enhanced, modified, and adapted to new

requirements, the code becomes more complex and drifts

away from its original design, thereby lowering the

quality of the software [1].

Developers and designers always strive for quality

software. Alshayeb [2] stated that ‗Quality software tends

to be robust, reliable and easy to maintain, and thus

reduces the cost of software development and

maintenance‘.

ISO/EIC 9126 standard [3] defines software quality

characteristics as ―a set of attributes of a software product

by which its quality is described and evaluated‖. The

factors that affect software quality can be classified into

two groups: 1) factors that can be directly measured

(internal quality attributes) 2) factors that can be

measured only indirectly (external quality attributes).

In order to improve software quality while software is

evolving, several methods have been applied. Refactoring

is one of those methods. Fowler [4] defines refactoring as

―a change made to the internal structure of software to

make it easier to understand and cheaper to modify

without changing its observable behaviour‖. Further he

stated that refactoring helps to improve the design of

S.H. Kannangara Department of Industrial Management, Faculty of

Science, University of Kelaniya, Sri Lanka.

W.M.J.I Wijayanayake Department of Industrial Management,

Faculty of Science, University of Kelaniya, Sri Lanka.

software, make software easier to understand, find bugs,

and program faster.

Fowler [4] has provided a catalogue of refactoring

which includes 22 code bad smells and 72 possible

refactoring techniques. Fowler categorizes these

refactoring techniques into: composing method, moving

features between objects, organizing data, simplifying

conditional expressions, making method call simpler and

dealing with generalization.

It is assumed that refactoring positively affect non-

functional aspects, presumably extensibility, modularity,

reusability, complexity, maintainability, and efficiency as

stated in [1]. Wilking et al. [5] mentioned that refactoring

reported additional negative aspects too. They consist of

additional memory consumption, higher power

consumption, longer execution time, and lower suitability

for safety critical applications.

Maintenance of software is reported as a serious cost

factor [1]. Over 90% of the cost of software development

is for software maintenance [6]. One solution proposed to

reduce maintenance effort is refactoring [4] which is a

method of continuous restructure of code according to

implicit micro design rules. Recently Schofield et al. [7]

performed a return on investment analysis on an open

source project in order to estimate savings in effort, given

a specific (beneficial) code change. They found that, most

of the time, refactoring have beneficial impacts on

maintenance activities, and thus are motivated from an

economic perspective.

It can be noticed that there is a relationship between

refactoring, software quality and software maintenance.

Several studies have addressed this relationship between

refactoring, software quality and software maintenance.

They have measured internal or external quality attributes

of source code, before and after refactoring the codes.

Through that they came up with different conclusions on

relationship between refactoring and software quality and

software maintenance.

KANNANGARA ET AL. IMPACT OF REFACTORING – PNCTM; VOL. 2, JAN 2013

61

The main objective of this study is to quantitatively

assess the effect of refactoring on different external

quality attributes in order to decide whether the cost and

the time put into refactoring are worthwhile.

The reminder of this paper structured as follows:

Section 2 provides a summary of relevant literature which

are addressed the relationship between refactoring and

software quality and maintenance. Research methodology

and experimental design used for the research is described

in Section 3. Research approach, hypothesis, code

selection, sample selection, selected quality factors and

selected refactoring techniques are presented here.

Section 4 provides experimental data analysis. Finally, the

final section provides the conclusions and suggestions for

future research that can be pursued in this area.

II. RELATED WORKS

A growing number of studies address the relationship

between refactoring and the internal structure of source

code and its impact on software quality and the evolution

of a software design: an excellent overview is given in [1].

Several studies have been conducted to evaluate the

impact of refactoring of software quality ([8], [9]). These

studies can be categorized into several categories

according to focused quality factors: internal quality

factors, external quality factors and combination of both

quality factors.

Limited number of researchers quantitatively evaluated

the impact of refactoring on internal quality software

attributes. Bois and Mens [8] proposed a technique using

metrics to analyse the refactoring impact on internal

quality metrics as indicators of quality factors. They

proposed formalism based on abstract syntax tree

representation of the source-code, extended with cross-

references to describe the impact of refactoring on

internal program quality. They focused only on three

refactoring methods. But they did not provide any

experimental validation in an industrial environment. The

results in [8]‘s work showed both positive and negative

impacts on the studied measures. Stroggylos and Spinellis

[10] analysed source code version control system logs of

four popular open source software systems to detect

changes marked as refactoring and examine their effects

on software metrics. They finally came up with a

conclusion that refactoring does not improve quality of a

system in a measurable way. Bois et al. [11] developed

practical guidelines for applying refactoring methods to

improve coupling and cohesion characteristics and

validated these guidelines on an open source software

system. There were only five refactoring techniques under

study and came up with results that the effect of

refactoring on coupling and cohesion measures ranged

from negative to positive.

Very few numbers of studies took the approach of

assessing refactoring effects on external software quality

attributes. Geppert et al. [12] empirically investigated the

impact of refactoring on changeability. This study found

that the customer reported defect rates and change effort

decreased in the post-refactoring releases. The effect of

refactoring on maintainability and modifiability as

investigated by [5] through an empirical evaluation.

Maintainability was tested by randomly inserting defects

into the code and measuring the time needed to fix them.

Modifiability was tested by adding new requirements and

measuring the time and Line of Code (LOC) metric

needed to implement them. Their findings on

maintainability test show slight advantage for refactoring

and Modifiability test shows disadvantage for refactoring.

Other researchers chose the approach of assessing

impact of refactoring on internal attributes as indicators of

external software attributes. To do so, they defined and

relied on relationships between internal and external

attributes. Kataoka et al. [9] proposed coupling metrics as

a quantitative evaluation method to measure the effect of

refactoring on program maintainability. For the purpose

of validation they analysed a C++ program for two

refactoring techniques: Extract Method and Extract Class

which developed by a single developer, but did not

provide any information on the development environment.

Thus, it is questionable if their findings are valid in a

different context where development teams follow a

structured process and use common software engineering

practices for knowledge sharing. Moser et al. [13]

proposed a methodology to assess whether or not

refactoring improves reusability and promotes ad-hoc

reuse in an Extreme Programming (XP)-like development

environment. They focused on internal software metrics

that are considered to be relevant to reusability based on

metric interpretation of [14]. They came up with a

conclusion that refactoring has a positive effect on

reusability. The impact of refactoring on development

productivity and internal code quality attributes was

analysed by [15]. A case study has been conducted to

assess the impact of refactoring in a close-to industrial

environment and the collected measures were Effort

(hour), and Productivity (LOC). Results indicate that

refactoring not only increases aspects of software quality,

but also improves productivity. Alshayeb [2]

quantitatively assessed, using software matrices based on

metric interpretation of [14], the effect of refactoring on

different external quality attributes (Adaptability,

Maintainability, Understandability, Reusability,

Testability). But this study didn‘t prove that refactoring

improves external quality of the software. Shatnawi and

Li [16] studied the effect of software refactoring on

software quality. They have conducted a study on a larger

number of refactoring techniques(43 refactorings) using a

Quality Model for OO Design(QMOOD) on four quality

factors measured indirectly using nine different software

measures. They had provided details of findings as

heuristics that can help software developers make more

informed decisions about what refactoring techniques to

perform in regard to improve a particular quality factor.

They validated the proposed heuristics in an empirical

setting on two open-source systems. They found that the

majority of refactoring heuristics do improve quality;

however some heuristics do not have a positive impact on

all software quality factors.

After analysing above mentioned studies, many issues

in those can be deduced as follows:

KANNANGARA ET AL. IMPACT OF REFACTORING – PNCTM; VOL. 2, JAN 2013

62

- All these previous studies did not come to

same conclusions on impact of refactoring.

Therefore, there is a further need of analysing

impact of refactoring.

- Most of the studies which were evaluated

external quality factors did it by using internal

quality factors and majority of them used

quality models. Therefore their research

findings are totally depending on the validity

of those quality models.

- And those who evaluated external quality

factors only evaluated one or two external

quality factors. None of them focus on ISO

quality factors or other world accepted quality

model for selecting quality factors.

- Finally, except one study [16] all the other

studies used only less than ten refactoring

techniques for their study. Most of them did

not consider any valid fact when selecting

refactoring techniques for their study.

To overcome above issues this study was conducted on a

considerable amount of refactoring techniques and only

focused on external quality factors selected from ISO

quality model.

III. RESEARCH METHODOLOGY

As the objective of this study was to quantitatively

measure the impact of refactoring on code quality

improvement, quantitative research approach is more

preferable.

Experiential evidence of the effect of refactoring is

rarer to be found. Those experiments were ended up with

mixed picture of refactoring. Therefore, it is a good

reason for selection of experimental research approach to

quantitatively access the impact of refactoring on code

quality.

The general approach followed by experiment

consisted of a group of participants using the same

application developed by using C#.net. One group was

assigned refactored code using selected refactoring

techniques while the rest was assigned source code

without refactoring. The assignment to a treatment and

control groups were done at random.

A. Selected Refactoring Techniques

Fowler [4] proposed 72 refactoring techniques in his

catalogue of refactoring. Because of time limitations and

size of source code, it is not possible to apply all the

refactoring techniques for the experiment.

Among the studies which have evaluated the impact of

refactoring, most recent study [16] present large

evaluation of 43 refactoring techniques among 72

refactoring techniques in Fowler‘s [4] catalogue.

Evaluated refactoring techniques were ranked according

to the impact of code quality. Therefore, for this study, 10

refactoring techniques were selected from [16]‘s study

which were ranked having high impact.

Selected Refactoring Techniques are follows:

- Introduce Local Extension

- Duplicate Observed Data

- Replace Type Code with Subclasses

- Replace Type Code with State/Strategy

- Replace Conditional with Polymorphism

- Introduce Null Object

- Extract Subclass

- Extract Interface

- Form Template Method

- Push Down Method

B. Selected Quality Factors

As there are only few studies were conducted to

evaluate impact on refactoring on external quality factors

without using internal quality factors, this experiment was

designed to evaluate external quality factors without using

any internal quality factors or quality models.

It can be noticed that most of previous studies were

limited to only a few external quality attributes as

described in section II. In this research, the main

consideration is more towards external quality attributes

to get a precise indication of whether or not software

quality can be improved by refactoring. ISO quality

model [3] is used for the selection of quality factors. As

stated in [17], ISO Quality Model is selected as Quality

Model for this study. Selection of external quality factors

for evaluation is done by using this quality model. The

following are the external quality attribute that will be

used in this study:

1) Maintainability: A set of attributes that bear on

the effort needed to make specified

modifications.Following sub characteristics will be tested

in this study [3].

- Analysability

- Changeability

2) Efficiency: Efficiency is a set of attributes that

bear on the relationship between the level of performance

of the software and the amount of resources used, under

stated conditions. Following sub characteristic will be

tested in this study [3].

- Resource Utilization

Following are the quality factors which were excluded

from study among ISO quality model which is having

mainly 6 quality factors.

1) Functionality: Excluded the functionality factor

because refactoring does not change the behaviour of

systems, rather it changes the internal characteristics of

systems without changing functionality.

2) Usability: Exclude the usability factor because it

is more implementation oriented. Usability indicates how

easy it is to learn and use the software.

3) Reliability: Reliability is also more

implementation oriented. Reliability is an attribute that

can only be estimated by actually running the software

several times with a variety of test data and then

inspecting the defects uncovered or the number of times

that the code terminates normally with the expected

output.

KANNANGARA ET AL. IMPACT OF REFACTORING – PNCTM; VOL. 2, JAN 2013

63

4) Portability: Indicates how easy is it to port or

migrate the software to a different hardware or Operating

system. Includes sub attributes installability, adaptability

and replaceability. But in this experimental design there is

no direct way to evaluate this factor. Therefore, this factor

also exclude from the study.

C. Variables

1) Independent Variables: The independent

variable of this experiment is the treatment which is a

single, dichotomous factor. Either a participant was

assigned to group which is used refactored code or to

group which is used code without refactoring, in order to

rule out the placebo effect which known as phenomenon

which may result in some therapeutic effect in subjects

given control [19].

2) Dependent Variables: Dependent variables for

this experiment were, Marks obtained for question paper,

Time need to fix bugs and Disk space.

D. Research Hypothesis

The main hypothesis of an improved Analysability

measured by the marks obtained M will be formalized by

H0: MRef <= MNRef

With MRef being a mean value of marks obtained by the

refactoring group and MNRef being a mean value of marks

obtained by the without refactoring group. Thus, the

resulting alternative hypothesis is

H1: MRef >MNRef

Concerning corrective Changeability, the

corresponding hypothesis is that the measured time for fix

bugs T during the changeability test was greater for the

without refactoring group leading to the null hypothesis of

H0: TRef >=TNRef

The expected hypothesis thus was

H1: TRef <TNRef

The corresponding hypothesis for improvement of

Resource Utilization measured by the disk space obtained

S will be formalized by

H0: SRef >= SNRef

H1: SRef < SNRef

E. Sample Selection

The experiment was carried out with twenty students.

When selecting participants, the major skill that should

have with them is decided as programming skill.

Two options were available when selecting target

population. One was selection of Undergraduates and

recently passed out students as a target population and

other option was selection of professional in software

development in industry as a target population. But by

considering convenience and accessibility, current

undergraduates and recently passed out students of

Department of Industrial Management, Faculty of Science,

University of Kelaniya was selected as population for

experimental sample selection.

The selection procedure was conducted for

undergraduates and recently passed out students based on

two criteria. They are,

- Based on semester examination results for

programming related subjects

- Based on survey done in order to gathers

student‘s familiarity of C#.Net and Object

Oriented Concepts: Online questionnaire was

design to gather responses.

After collecting both data student‘s results and

responses were scaled to ten. Average value for each

student was calculated and categorizes them according to

that value.
TABLE I

STUDENT CATEGORIZATION CRITERIA

Obtained Average >=8.50 >=7.00 >=6.50

Category A B C

Finally the selection of students for the experiment was

done according to their assigned category. As an example

20 students was selected starting from Category ‗A‘

students and then Category ‗B‘ students like wise.

F. Code selection

In order to apply 10 refactoring techniques middle size

project with bad smells was selected as a source code. As

most of the participants were aware with C#.net, code

developed by using C#.net was used for the experiment.

System developed by third year student for her 3
rd

 year

computer bases project was selected as source code for

the experiment. As that was an undergraduate level

project, the understandability of code assumed to be high

among other same level students. Bad smells were

identified and applied all the selected refactoring

techniques into code which was given to the experimental

group.

G. Variable Measurement

Each quality factor was measured using special set of

procedure. Measurement procedure for each quality factor

is shown in Table II.

TABLE II

DEPENDENT VARIABLES MEASUREMENT PROCEDURE

Quality

Factor

Measurement Procedure

Analysability

- Question paper was provided to

each participant to answer

within specific time period.

- It contained Multiple Choice

Questions and yes/no type

questions.

- Same question paper was

distributed among both groups.

- Then question papers were

evaluated and marks obtained

by each group member were

recorded.

Changeability

- Measured time needed for the

fixing task of randomly induced

two semantic failures and one

new requirement.

- The tests consisted of a short

description of the failure (in

case of a semantical failure)

and the measuring consisted of

the time needed to locate and

fix them.

- Time frame was provided to fix

KANNANGARA ET AL. IMPACT OF REFACTORING – PNCTM; VOL. 2, JAN 2013

64

bug.

- The measuring was done in

minutes and supervised by a

member of the chair.

Resource

Utilization

- Disk space obtained by source

file was recorded in each

participant‘s computer.

IV. ANALYSIS OF DATA

This section provides a summary of the data collection

and analysis of the research. The statistical analysis of

experiment results under each quality factor is described

in following sub sections.

As the size of one group is 10, which is less than 30,

for the hypothesis testing t-distribution was used. The

statistical test pooled-Variance t-test for the difference

between two means was employed for each analysis.

A. Data analysis for Analysability

Analysability was measured by using marks obtained

by each group member for the given question paper. Same

question paper which contained 15 multiple choice and

short answer questions was distributed to both control and

experimental groups. The time duration for question

paper was 30 minutes and final mark was given by out of

15.

Three main measures of central tendency: the mean;

the median; and the mode are calculated in order to

analyse experimental data. Following Table III

summarized all the measures of central tendency.

TABLE III

MEASURES OF CENTRAL TENDENCY – MARKS OBTAINED BY

PARTICIPANTS

 Control Group Experimental Group

Mean 7.10 7.20

Median 6 8

Mode 4 8

A minor advantage for the refactoring treatment can be

seen by mean value, but there is no significant difference

between mean values of both groups.

Mean value of both groups are compared using t-test in

order to test hypothesis of better analysability through

refactoring. The result is that there is insufficient

statistical evidence to claim a higher marks obtained by

experimental group (group with refactored code). So the

assumption of better analysability thus cannot be

supported according to hypothesis testing.

B. Data analysis for Changeability

The measurement of changeability, which consisted of

a random insertion of two non-syntactical errors and one

new requirement for change piece of code, was measured

in minutes. The errors were created by interchanging code

pieces and assigning some invalid values for variables.

Three main measures of central tendency: the mean;

the median; and the mode are calculated in order to

analyse experimental data.

TABLE IV

MEASURES OF CENTRAL TENDENCY – TIME SPENT BY BOTH GROUPS

 Control Group

(Minutes)

Experimental Group

(Minutes)

Mean 59 77

Median 55 83

Mode - 83

A no advantage for the refactoring treatment can be

seen by mean value, and there is a significant difference

between mean values of both groups. The time spent by

experimental group to fix bug is considerably higher than

control group.

The results of hypothesis test which is done by using t-

test is that there is insufficient statistical evidence to claim

a minimum time spent by experimental group (group with

refactored code). So the assumption of better

changeability thus cannot be answered according to

hypothesis testing.

C. Data analysis for Resource Utilization

Resource Utilization was measured by using disk space

obtained by source file on each participant‘s computer.

The size on disk was measured by in Mega Bytes (MB).

The following Table V summarized the results

obtained to measure resource utilization.

TABLE V

MEASURES OF CENTRAL TENDENCY – SOURCE FILE SIZE ON DISK

 Control Group

(MB)

Experimental Group(MB)

Mean 62.11 62.77

Median 58.55 59.05

Mode 58.50 59.00

When comparing results of both groups, the difference

of the mean value for both groups was not significantly

different. But there is minor disadvantage for refactoring

group.

Hypothesis testing for Resource Utilization also shows

that there is insufficient statistical evidence to claim a

minimum disk space obtained by refactored code. Thus

the better resource utilization by refactored code cannot

be proven according to the hypothesis testing.

V. CONCLUSION AND FUTURE WORKS

In this paper, a controlled experiment is presented

assessing the effect of refactoring on non-functional

aspects. It assessed ten refactoring techniques on three

external quality factors: Analysability, Changeability and

Resource Utilization. Only analysability of code seems to

have minor advantage from refactoring. The effect of

KANNANGARA ET AL. IMPACT OF REFACTORING – PNCTM; VOL. 2, JAN 2013

65

refactoring on Changeability and Resource Utilization

seems disadvantage for refactored code. All the

hypothesis tests results also indicate that there is

insufficient statistical evidence to claim that the code

quality can be enhancements by refactoring. The

generalization that refactoring improves quality was not

proven true in this study and the findings are inconclusive.

The results of this study indicate that there is further

need of addressing the impact of refactoring. As this

study used all ten refactoring techniques together in one

source code, it cannot identify that which refactoring

technique cause for high impact on code quality.

Therefore, it would be interesting to analyse impact of

each refactoring technique on code analysability, code

changeability and resource utilization of code.

ACKNOWLEDGEMENT

Special thanks go to all the participant of experiment for
their contribution of valuable time and effort.

REFERENCES

[1] T. Mens and T.A. Tourwé, ―Survey of Software Refactoring‖,
IEEE Transactions on Software Engineering, vol. 30, no. 2, pp.

126-139, 2004.

[2] M. Alshayeb, ―Empirical investigation of refactoring effect on
software quality‖, Information and Software Technology, vol. 51,

pp.1319–1326, 2009.

[3] International Standards. (2001). ISO/IEC 9126-1 Standard.
[Online]. Available: http://webstore.iec.ch/preview/infoisoiec

9126-1%7Bed1.0%7Den.pdf.

[4] M. Fowler, Refactoring Improving the Design of Existing Code,
Addison-Wesley, 1999.

[5] D. Wilking, U. Khan and S. Kowalewski, ―An empirical

evaluation of refactoring‖, e- Informatica Software Engineering
Journal, vol. 1, pp. 27-42, 2007. K. Jussi. (2010)

[6] Software Maintenance Costs. [Online]. Available:
http://users.jyu.fi/~koskinen/smcosts.htm.

[7] C. Schofield, B. Tansey, Z. Xing, E. Stroulia, ―Digging the

Development Dust for Refactorings‖, In Proc. of the 14th

International Conference on Program Comprehension (ICPC’06),

Athens, Greece, 2006.
[8] B.D. Bois and T. Mens, ―Describing the impact of refactoring on

internal program quality‖, in Proc. of the International Workshop

on Evolution of Large-scale Industrial Software Applications,
Amsterdam, The Netherlands. pp. 37-48, 2003.

[9] Y. Kataoka, T. Imai, H. Andou and T. Fukaya, ―A quantitative

evaluation of maintainability enhancement by refactoring‖, in
Proc. of the IEEE International Conference on Software

Maintenance, Montreal, Quebec, Canada, 2002.

[10] K. Stroggylos and D. Spinellis, ―Refactoring – does it improve
software quality?‖, In Proc. of 5th International Workshop on

Software Quality (WoSQ’07:ICSE Workshops), pp. 10–16, 2007.

[11] B.D. Bois, S. Demeyer and J. Verelst, ―Refactoring – improving
coupling and cohesion of existing code‖, in Proc. of 11th

Working Conference on Reverse Engineering (WCRE’04), pp.

144–151, 2004.
[12] B. Geppert, A. Mockus and F. Robler, ―Refactoring for

changeability: a way to go‖, in Proc of 11th IEEE International

Software Metrics Symposium (METRICS’05), Como, Italy, 2005.
[13] R. Moser, A. Sillitti, P. Abrahamsson and G. Succi, ―Does

Refactoring Improve Reusability?‖, in Proc. of 9th International

Conference on Software Reuse (ICSR’06) , pp.287–297, 2006.
[14] F. Dandashi, and D.C. Rine, ―A Method for Reusability of

Object-Oriented Code Using a Validated Set of Automated

Measurements‖, in Proc. of 17th ACM Symposium on Applied
Computing (SAC 2002), Madrid, 2002.

[15] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti and G. Succi,

―A case study on the impact of refactoring on quality and
productivity in an agile team‖, in Proc. of the Central and East-

European Conference on Software Engineering Techniques ,

Poznan, Poland, 2007.
[16] R. Shatnawi and W. Li., ―An Empirical Assessment of

Refactoring Impact on Software Quality Using a Hierarchical

Quality Model‖, International Journal of Software Engineering
and Its Applications, vol. 5, no. 4, 2011.

[17] R. E. Al-Qutaish,‖ Quality Models in Software Engineering

Literature: An Analytical and Comparative Study‖, Journal of
American Science, vol. 6, no. 3, pp. 166-175, 2010.

[18] Hani (2009). Placebo Effect. [Online]. Available:

http://explorable.com/placebo-effect.html

