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Abstract. A solution scheme based on the fundamental solution for a generalized edge dislocation
in an infinite magnetoelectroelastic solid is presented to analyze problems involving single, multiple
and slowly growing impermeable cracks. The fundamental solution for a generalized dislocation is
obtained by extending the complex potential function formulation used for anisotropic elasticity. The
solution for a continuously distributed dislocation is derived by integrating the solution for an edge
dislocation. The problem of a system of cracks subjected to remote mechanical, electric and mag-
netic loading is formulated in terms of set of singular integral equations by applying the principle of
superposition and the solution for a continuously distributed dislocation. The singular integral equa-
tion system is solved by using a numerical integration technique based on Chebyshev polynomials.
The Ji and M-integrals for single crack and multi-cracks problems are derived and their dependence
on the coordinate system is investigated. Selected numerical results for the M-integral, total energy
release rate and mechanical energy release rate are presented for single, double and multiple crack
problems. The case of a slowly growing crack interacting with a stationary crack is also considered.
It is found that M-integral presents a reliable and physically acceptable measure for assessment of
fracture behaviour and damage of magnetoelectroelastic materials.

Key words: Cracks, electric field, energy release rate, fracture mechanics, magnetic field, magnetoelec-
troelastic materials, M-integral, stress intensity factors.

1. Introduction

Modern materials such as magnetoelectroelastic solids are used in the development
of smart structures technology. Magnetoelectroelastic composites (e.g. ferrite-ferro-
electric composites) can be used to develop broadband sensing and actuating devices
required in advanced engineering applications. Basic understanding of fracture behav-
iour of this class of materials is required before investigating more complex issues
such as domain effects on fracture and magneto-electric fatigue. Unlike in the case
of elastic materials, fracture problems in piezoelectric and magnetoelectroelastic mate-
rials involve some fundamental issues that are not yet resolved. For example, there
is no consensus on the electric boundary conditions (permeable/conducting/insulat-
ing/presence of free charges) of a crack in a piezoelectric material and the role of
electric loading on crack propagation. McHenry and Koepke (1983) observed that
both positive and negative electric fields enhanced crack propagation. Compact ten-
sion tests performed by Park and Sun (1995), however, revealed that a positive elec-
tric field along the poling direction reduced the fracture load, while a negative electric
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field increased it. Singh and Wang (1995) observed that crack propagation was inhib-
ited by a positive applied electric field and enhanced by a negative field. Different
fracture criteria (e.g. total energy release rate, mechanical energy release rate, strain
energy density criterion, etc) when applied to piezoelectric materials predict different
behaviour and crack propagation paths. Many of these issues applicable to piezo-
electric solids are also relevant to magnetoelectroelastic solids although both exper-
imental and theoretical studies involving fracture of magnetoelectroelastic materials
are very limited.

O’Handley (2000) presents a comprehensive treatment of principles and applica-
tions of modern magnetic materials. These materials are generally categorized into
two groups: soft and hard magnetic materials based on the magnitude of the coer-
cive field. Parton and Kudryavtsev (1988) presented the basic theory of linear elec-
tromagnetoelasticity and referred to some early studies of this class of materials. The
linear theory is applicable only to weakly magnetizable materials without hysteresis
and domain effects. Shindo (1983), Shindo et al. (1999) and Shindo (2001) consid-
ered crack problems in soft ferromagnetic solids. Sabir and Maugin (1996) studied
energy release rate of a crack in paramagnetic and soft ferromagnetic materials in the
absence of hysteresis and spin-ordering effects. Fomethe and Maugin (1998) examined
the driving force acting on a straight crack in an elastic hard ferromagnetic material
by relating the driving force to a global material force (Maugin, 1995) and evaluat-
ing the energy release rate. They showed that path independent integrals such as the
J -integral hold only when both material and spin inertia are neglected.

More recently, Liu et al. (2001) derived the Green’s functions for an infinite mag-
netoelectroelastic plane containing an elliptic cavity. They reduced the cavity solution
to obtain the solution for a permeable crack. Gao et al. (2003a, b) and Song and
Sih (2003) analyzed single and collinear cracks and presented solutions for either the
crack-tip Stress Intensity Factor (SIF) or the Strain Energy Density (SED) criterion.
Liu et al. (2001) and Gao et al. (2003a, b) did not present any numerical results
and it is difficult to obtain from their solutions dependence of fracture parameters
on crack orientation and electric, magnetic and mechanical loading. Furthermore, it
is known that damage development in brittle materials is characterized by the initia-
tion and accumulation of multiple, arbitrarily oriented interacting cracks rather than
a single crack or collinear cracks. In addition, the conventional crack-tip fracture
parameters, such as the SIF and SED are known to have certain deficiencies when
applied to assess situations involving a cluster of randomly distributed cracks (Tian
and Chen, 2002).

Over the past 40 years, many path-independent integrals such as the J-integral, the
Jk vectors, the L-integral, and the M-integral (Rice, 1968; Knowles and Sternberg,
1972; Budiansky and Rice, 1973; Chen and Lu, 2003) have been proposed to study
behaviour of cracks. These path-independent integrals were first applied to single
crack problems. Recently, the M-integral was employed to study multi-crack inter-
action problems in brittle elastic materials (Chen, 2001a; Tian and Chen, 2002).
It is found that in comparison to crack-tip based fracture criteria such as the
SIF and SED, the M-integral presents a better physical representation of fracture
behaviour and provide an effective measure in assessing damage level due to clus-
ters of arbitrarily distributed and strongly interacting micro-cracks. A review of lit-
erature indicates that application of path independent integrals to study fracture
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magnetoelectroelastic solids has not received attention in the past. It should be noted
that path independent integrals are valid only for weakly magnetizable materials with-
out hysteresis and domain effects.

The objective of this paper is to conduct a comprehensive theoretical study of
fracture problems in magnetoelectroelastic solids. Attention is focused on the appli-
cation of the M-integral to examine impermeable single cracks, randomly distributed
multiple impermeable cracks and slowly growing impermeable cracks. Solutions for
the M-integral are compared with other fracture parameters such as the crack-tip
total energy release rate and mechanical strain energy release rate. The analysis starts
with the derivation of the fundamental solution for a continuously distributed gen-
eralized dislocation in an infinite magnetoelectroelastic plane. The formulation used
in this paper is based on the continuously distributed dislocation model proposed by
Gross (1982) for elastic materials. Using the fundamental solution for a distributed
dislocation and the principle of superposition, the problems involving multiple cracks
are formulated in terms of a system of singular integral equations. The solutions for
SIFs, KI and KII, the Electric Displacement Intensity Factor (EDIF), KE, the Mag-
netic Induction Intensity Factor (MIIF), KM , as well as the total and mechanical
strain energy release rates are presented. The Ji and M-integrals for single crack and
multiple cracks problems are presented and their dependence on the reference coordi-
nate system is examined. A proof of the conservation law of the Ji integral for mag-
netoelectroelastic solids is given. Selected numerical results are presented to portray
the effects of crack orientation with respect to polarization, crack interaction, and
electric, magnetic and mechanical loading on fracture parameters, and the merits of
the M-integral are discussed. Accuracy of numerical results is also verified by using
the conservation law of the J-integral.

2. Solution for a continuously distributed dislocation

2.1. Field equations and general solution

Linear response of a magnetoelectroelastic solid is governed by the following equa-
tions defined with respect to a standard Cartesian coordinate system (Parton and
Kudryavtsev, 1988).

σij =Cijklεkl − elijEl −hlijHl,

Di = eiklεkl +ωilEl +αilHl,

Bi =hiklεkl +αilEl +γilHl, (1)

εij = 1
2(ui,j +uj,i), Ei =−φ,i Hi =−ϕ,i, (2)

σij,i =0, Di,i =0, Bi,i =0, (3)

where σij , Di , Bi , εij , El, Hl, ui , φ and ϕ are the stress, electric displacement,
magnetic induction, strain, electric field, magnetic field, elastic displacements, electric
potential and magnetic potential, respectively; ωil and γil represent the dielectric per-
mittivities and magnetic permeabilities, respectively; Cijkl, elij , hlij , and αil denote the
elastic, piezoelectric, piezomagnetic and electromagnetic constants, respectively.
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Consider plane problems where the elastic displacements, electric potential and
magnetic potential are functions of only x1 and x2 coordinates. In addition, the
medium is assumed to be poled in the x2 direction. Following Stroh (1958) and Ting
(1996), the magnetoelectroelastic field can be expressed in terms of four complex-val-
ued functions f1(z1), f2(z2), f3(z3) and f4(z4), where zj =x1 +µjx2 and µj is a com-
plex parameter defined later. The general solutions for the in-plane displacements u1

and u2, electric potential φ, magnetic potential ϕ, stresses σ11, σ12 and σ22, electric
displacements D1 and D2, and magnetic inductions B1 and B2 can be expressed in
terms of fj (zj ) as,

{ui}=2Re




4∑
j=1

Aijfj (zj )


 , (4)

{�2i}=2Re




4∑
j=1

Lijf
′
j (zj )


 , {�1i}=−2Re




4∑
j=1

Lijµjf
′
j (zj )


 , (5)

where the generalized displacement vector, {ui}= {u1, u2, φ, ϕ}T; generalized stress
vector in the x1 direction, �1 ={σ11,σ12,D1,B1

}T
; generalized stress vector in the x2

direction, �2 ={σ12, σ22,D2,B2}T; and ( )′ denotes differentiation with respect to zj .
In addition, µj(j = 1,2, . . . ,4) denotes the four eigenvalues (four distinct conju-

gate pairs with positive imaginary parts) and Aij and Lij denote the elements of the
eigenvectors of the following eigenvalue problem.

[ −T−1�T T−1

�T−1�T −� [−T−1�T]T

]{
a
b

}
=µ

{
a
b

}
, (6)

where

aj ={A1j ,A2j ,A3j ,A4j

}
, bj ={L1j ,L2j ,L3j ,L4j

}
, (7)

�=




C11 0 0 0
0 C66 e16 h16

0 e16 −ω11 −α11

0 h16 −α11 −γ11


 �=




0 C12 e21 h21

C66 0 0 0
e16 0 0 0
h16 0 0 0


 T=




C66 0 0 0
0 C22 e22 h22

0 e22 −ω22 −α22

0 h22 −α22 −γ22


,

(8)

where C11, e11, etc are material constants and plane strain deformation is assumed
together with poling in the x2 direction. The general constitutive relation given by
Equation (1) is specialized in Appendix A for three-dimensional deformations of a
medium poled in the x2 direction [Equations (A.1)–(A.3)] and for plane strain defor-
mations [Equations (A.4)–(A.6)].

2.2. Continuously distributed dislocation

Assume that there exists a generalized edge dislocation at point P (x̂1, x̂2) in an
infinite magnetoelectroelastic plane as shown in Figure 1. Following Miller (1989),
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the complex potential functions corresponding to the edge dislocation at P can be
expressed as,

f ′
j (zj )= ρj

zj − ẑj

(j =1,2,3,4), (9)

where ẑj = x̂1 +µj x̂2 and ρj are complex constants to be determined.
Around a loop surrounding the point P, the stresses, electric displacements and

magnetic induction are self-equilibrated, and the mechanical displacement, electric
potential and magnetic potential jumps associated with the dislocation are denoted
by the extended Burgers vector 
u = (
u1,
u2,
φ,
ϕ). The complex constants ρj

are determined by solving the following equations.

Im
4∑

j=1

Lijρj =− Xi

4π
(i =1,2,3,4), (10a)

Im
4∑

j=1

Aljρj =−
ul

4π
(l =1,2), (10b)

Im
4∑

j=1

A3jρj =−
φ

4π
, Im

4∑
j=1

A4jρj =−
ϕ

4π
, (10c)

where X1, and X2 represent the net force in the x1 and x2 directions around a loop
surrounding the dislocation and X3 and X4 denote the net electric displacement and
net magnetic induction on a loop surrounding the dislocation. For a standard dislo-
cation, Xi(i =1,2,3,4) are identical to zero.

Consider a continuously distributed dislocation field along a line segment �

with orientation angle β and length 2a (Figure 1). A local coordinate ξ is defined
along � with its origin at the centre point Q(x0

1 , x
0
2) of �. Let the general-

ized Burgers vector of the dislocation field along � be denoted by 
u(ξ) =
(
u1 (ξ) ,
u2 (ξ) ,
φ (ξ) ,
ϕ (ξ)). Then along �, z = x0

1 + ix0
2 + ξeiβ , and

i =√−1, −a <ξ <a. The solution for magnetoelectroelastic field due to a dislocation
of intensity 
u(ξ) at point P is given by the Equation (9) with ρj replaced by ρj (ξ).
Coupled field corresponding to the distributed dislocation field on � can therefore be
expressed in terms of the complex potential functions fj (zj ) defined by,

f ′
j (zj )=

∫ a

−a

ρj (ξ)

zj − ẑj (ξ)
dξ. (11)

Consider a point R(x1, x2) as shown in Figure 1, and define another Cartesian
coordinate system

(
x ′

1, x
′
2

)
with the origin at R and orientation angle β1 with respect

to x1. Let the generalized stress vector in the x ′
2 direction at an arbitrary point S

(z=x1 + ix2 +ηeiβ1 ) due to the distributed dislocation field on � be denoted by �′
2 ={

σ ′
21, σ

′
22,D

′
2,B

′
2

}T
. In view of Equations (5) and (11),

�′
2i =

∫ a

−a

2Re
4∑

j=1

[
Fij (µj , β1)

ρj (ξ)

�(x0
1 , x

0
2 , ξ, β, x1, x2, η, β1,µj )

]
dξ, (i =1,2,3,4)

(12)
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x1
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β

Figure 1. Coordinate system and geometry of continuously distributed dislocation.

where η is a local coordinate defined as shown in Figure 1 and

F1j (µj , β1)= 1
2(L1jµj +L2j ) sin 2β1 +L1j cos 2β1 (13a)

F2j (µj , β1)=−L1jµj sin2
β1 +L2j cos2 β1 −L1j sin 2β1 (13b)

Flj (µj , β1)=Lljµj sin β1 +Llj cosβ1 (l =3,4) (13c)

�(x0
1 , x

0
2 , ξ, β, x1, x2, η, β1,µj )=x1 −x0

1 +η cosβ1 − ξ cosβ

+(x2 −x0
2 +η sin β1 − ξ sin β)µj . (13d)

3. Formulation of multiple cracks problem

Gross (1982) developed a method to analyze cracks in an ideal elastic medium
by considering them as continuously distributed dislocations. Gross’ approach was
extended for piezoelectric materials by Xu and Rajapakse (2000) who solved the
problem of a branched crack in a piezoelectric medium by using the basic solu-
tion for a generalized dislocation in an infinite piezoelectric solid. Consider an infi-
nite magnetoelectroelastic solid with N arbitrarily oriented planar cracks as shown
in Figure 2. All crack are assumed to be impermeable (i.e. electric displacement and
magnetic induction normal to the crack faces are zero). A crack can be imperme-
able, permeable, semi-permeable or conducting with respect to the crack face electro-
magnetic boundary conditions. All these cases are practically possible depending on
the geometry of the crack and the electromagnetic properties of the medium inside
the crack. In experimental studies dealing with fracture of piezoelectric materials,
the impermeable boundary condition has been justified by Park and Sun (1995) and
Lynch et al. (1995). Furthermore, McMeeking (2001) presented an elegant discus-
sion of crack face boundary conditions in piezoelectric materials and showed using
theoretical arguments that the impermeable condition was often met in experiments.
Although the above studies deal strictly with piezoelectric or dielectric materials it
is reasonable to assume that the extension of the findings to electromagnetoelas-
tic materials is valid. Domain switching effects caused by singular crack tip field is
neglected in the present study as the development of domain switching models for
the present class of materials is still in its infancy.
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Figure 2. Geometry and loading system of a cluster of cracks.

The length and orientation angle of the kth crack (k=1,2, . . . ,N ) are denoted by
2ak and βk, respectively. A global coordinate system (x1, x2) with the origin O and a
local coordinate system (xk

1 , xk
2 ) with the origin at the centre Ok of the kth crack are

defined. A local coordinate ξk is defined along the length of the kth crack with its
origin at Ok. The infinite plane containing the cracks is subjected to remote mechan-
ical loading, σ∞

11 , σ∞
12 and σ∞

22 , remote electric displacements D∞
2 and D∞

1 (or electric
fields E∞

2 and E∞
1 ), and remote magnetic inductions B∞

2 and B∞
1 (or magnetic fields

H∞
2 and H∞

1 ).
Following Gross (1982), each crack shown in Figure 2 can be modelled as a

generalized distributed dislocation field of unknown density. The density of each
dislocation field is such that the crack face boundary conditions [i.e., σ k

2i = 0, (i =
1,2),Dk

2 = 0,Bk
2 = 0] are satisfied under the far field loading shown in Figure 2. By

using the solution for a distributed dislocation given by Equations (11) and (12) and
the principle of superposition, the system shown in Figure 2 can be reduced to the
following system of singular integral equations to determine the complex functions
ρj (ξk) related to the unknown distributed dislocation field corresponding to the kth
crack.

2Re
4∑

j=1

[
Fij (µj ,βk)

(∫ ak

−ak

ρj (ξk)

(ηk −ξk)(cosβk +µj sinβk)
dξk

+
N∑

l=1
l �=K

∫ ai

−ai

ρj (ξl)

�(xl
1,x

l
2,ξl,βl,x

k
1 ,x

k
2 ,ηk,βk,µj )

dξl

)]
=pi(βk) (i =1,2,3,4), (14)
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where −ak <ξk <ak, −ak <ηk <ak, and pi (βk) (i =1,2,3,4) can be expressed in terms
of the magnitudes of the applied loading as,

p1(βk)=− [(σ∞
22 −σ∞

11

)
cosβk sin βk +σ∞

12 cos 2βk

]

p2(βk)=−
[
σ∞

11 sin2
βk +σ∞

22 cos2 βk −σ∞
12 sin 2βk

]

p3(βk)=−D∞
2 cosβk +D∞

1 sin βk

p4(βk)=−B∞
2 cosβk +B∞

1 sin βk (15)

In addition, the following constraint is required to ensure single-valued displace-
ments (Erdogan, 1978).

∫ ak

−ak

ρj (ξk) dξk =0 (k =1,2, . . . ,N). (16)

If the remote electric and magnetic loading corresponds to applied electric and
magnetic fields instead of applied electric displacements and magnetic inductions,
then p3 (βk) and p4 (βk) are given by,

p3(βk)=−
[
(eC−1eT +ω)E∞ + (eC−1hT +α)H∞ + eC−1σ∞

]T {− sin βk, cosβk

}T
,

p4(βk)=−
[
(hC−1eT +α)E∞ + (hC−1hT +γ )H∞ +hC−1σ∞

]T {− sin βk, cosβk

}T
,

(17)

where σ∞ = {σ∞
11 , σ∞

22 , σ∞
12

}T
,E∞ = {E∞

1 ,E∞
2

}T
, H∞ = {H∞

1 ,H∞
2

}T
and C, e, h, α, γ

and ω are defined in Appendix A for plane strain problems.
The integral Equation (14) together with the constraint Equation (16) are solved

by using a numerical integration scheme based on Chebyshev polynomials (Erdogan
and Gupta, 1972; Erdogan, 1978). The unknown functions ρj (ξk) are expressed in
terms of Chebyshev polynomials of the first kind, i.e.,

ρj (tk)= 1√
1− t2

k

M∑
l=0

vjklτl(tk), (18)

where tk = ξk/ak, (−ak < ξk < ak), τl(tk) are the Chebyshev polynomials of the first
kind, vjkl denotes the coefficients of the Chebyshev polynomial expansion, and M
denotes the number of Gauss–Chebyshev collocation points.

After solving the Equation (14), the coupled field at any point in the medium can

be obtained. Let �k
2s =

〈
σ

(k),

21s σ
(k),

22s D
(k),

2s B
(k)

2s

〉T
denotes the singular part of the general-

ized stress vector of the kth crack which is required in the derivation of field intensity
factors. It can be shown that,

�
(k)

2is =2Re
4∑

j=1

[
Fij (µj ,βk)

∫ ak

−ak

ρj (ξk)

(ηk −ξk)(cosβk +µj sinβk)
dξk

]

=2πRe
4∑

j=1

{[
Fij (µj ,βk)/(cosβk +µj sinβk)

] M∑
l=0

[
vjkl

(
tk −

√
t2
k −1

)l

/
(
t2
k −1

)]}
.

(19)
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The generalized field intensity vector, K(k), at a tip of the kth crack has four ele-
ments: two SIFs, the EDIF and the MIIF. Therefore,

K(k) =
〈
K

(k)
II ,K

(k)
I ,K

(k)
E ,K

(k)
M

〉T
, (20a)

K
(k)
i = lim

r→0

√
2πr�

(k)

2is

=±√
πak




2πRe
4∑

j=1


Fij (µj , βk)

M∑
l=0

vjklτl(±1)

(cosβk +µj sin βk)







, (i =1,2,3,4),

(20b)

where r is the distance ahead of a crack tip along the crack line, and the positive
and negative signs in the right hand side of Equation (20) correspond to the right
and left crack tips, respectively.

The energy release rate can now be calculated by using the crack closure integral
(Park and Sun, 1995). For a magnetoelectroelastic solid, the total energy release rate
is the sum of the mechanical energy release rate, the electric energy release rate and
the magnetic energy release rate. Consider the case of a single crack without loss
of any generality and drop the superscript and subscript k from all field variables
for convenience. Suppose the crack extend by δ (self-similar), then the total energy
release rate (TERR) can be expressed as,

G= lim
δ→0

1
2δ

∫ δ

0
{σi2(x)
ui(δ −x)+D2(x)
φ(δ −x)+B2(x)
ϕ(δ −x)}dx,

where i =1,2. (21)

The Mode I and Mode II mechanical energy release rates (MERR) are given by,

GM
I = lim

δ→0

1
2δ

∫ δ

0
σ22(x)
u2(δ −x)dx (22a)

and

GM
II = lim

δ→0

1
2δ

∫ δ

0
σ12(x)
u1(δ −x)dx. (22b)

It can be shown that TERR, and Mode I and Mode II MERRs are related to the
crack tip SIFs, EDIF and MIIF in the following manner.

G= 1
4

KT�K, (23a)

GM
I = 1

4

[
�21KIKII +�22(KI )

2 +�23KIKE +�24KIKM

]
(23b)

and

GM
II = 1

4

[
�11(KII )

2 +�12KIKII +�13KIIKE +�14KIIKM

]
, (23c)

where �=2Re(iAL−1).
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The above relations clearly show that the total energy release rate and the Mode I
and Mode II mechanical energy release rates for plane problems depend on all four
field intensity factors.

4. Ji-Integral and M-integral analysis

4.1. Single crack case

Path-independent Ji-integrals (i =1,2) and M-integral for a single crack in an elastic
material were originally defined by Rice (1968), Knowles and Sternberg (1972) and
Budiansky and Rice (1973). Later, Suo et al. (1992) and Pak (1992) showed that for
a piezoelectric medium,

J1 =
∮

C

[
1
2

(
σij εij −DiEi

)
dx2 −niσipup,1ds −niDiφ,1ds

]
, (24a)

J2 =
∮

C

[
−1

2

(
σij εij −DiEi

)
dx1 −niσipup,2ds −niDiφ,2ds

]
, (24b)

M =
∮

C

[
1
2
(σij εij −DiEi)xlnl −niσipup,lxl −niDiφ,lxl

]
ds, (24c)

where i, j,p, l = 1,2; C denotes a closed contour around a crack; and nl is the out-
ward unit normal to C.

In the present paper, the authors extend the Ji- and M-integrals to magnetoelec-
troelastic solids and obtain the following results.

J1 =
∮

C

[
1
2

(
σij εij −DiEi −BiHi

)
dx2 −niσipup,1ds−niDiφ,1ds−niBiϕ,1ds

]
, (25a)

J2 =
∮

C

[
−1

2

(
σij εij −DiEi −BiHi

)
dx1 −niσipup,2ds−niDiφ,2ds−niBiϕ,2ds

]
, (25b)

M =
∮

C

[
1
2
(σij εij −DiEi −BiHi)xlnl −niσipup,lxl −niDiφ,lxl −niBiϕ,lxl

]
ds. (25c)

In the following, the dependence of the Ji and M-integrals on the coordinate sys-
tem is examined which is useful to the extension of the Ji and M-integrals to the
multiple cracks case. Consider a new Cartesian coordinate system (x∗

1 , x∗
2 ) and the Ji

and M-integrals can be expressed with respect to the new system of coordinates as,

J ∗
1 =

∮
C

[
1
2
(σ ∗

ij ε
∗
ij −D∗

i E
∗
i −B∗

i H ∗
i )dx∗

2 −n∗
i σ

∗
ipu∗

p,1ds −n∗
i D

∗
i φ

∗
,1ds −n∗

i B
∗
i ϕ∗

,1ds

]

(26a)

J ∗
2 =

∮
C

[
−1

2
(σ ∗

ij ε
∗
ij −D∗

i E
∗
i −B∗

i H ∗
i )dx∗

1 −n∗
i σ

∗
ipu∗

p,2ds −n∗
i D

∗
i φ

∗
,2ds −n∗

i B
∗
i ϕ∗

,2ds

]

(26b)

M∗ =
∮

C

[
1
2
(σ ∗

ij ε
∗
ij −D∗

i E
∗
i −B∗

i H ∗
i )x∗

l n
∗
l −n∗

i σ
∗
ipu∗

p,lx
∗
l −n∗

i D
∗
i φ

∗
,lx

∗
l −n∗

i B
∗
i ϕ∗

,lx
∗
l

]
ds

(26c)
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Assume that the coordinate system (x∗
1 , x∗

2 ) is obtained from a simple rotation of
the coordinate system (x1, x2) by angle β. Following relationships can be established
by using the rules for coordinate transformation of the first and second order tensors.

xlnl =x∗
l n

∗
l , niσipup,lxl =n∗

i σ
∗
ipu∗

p,lx
∗
l ,

niDiφ,lxl =n∗
i D

∗
i φ

∗
,lx

∗
l , niBiϕ,lxl =n∗

i B
∗
i ϕ∗

,lx
∗
l (27)

and

σij εij −DiEi −BiHi =σ ∗
ij ε

∗
ij −D∗

i E
∗
i −B∗

i H ∗
i . (28)

It can be shown by using Equations (26)–(28) and (25) that,

J1 =J ∗
1 cosβ −J ∗

2 sin β, J2 =J ∗
1 sin β +J ∗

2 cosβ, M =M∗ (29)

Equation (29) reveals that Ji -integrals (i = 1,2) change when the coordinate sys-
tem is rotated whereas the M-integral is unchanged. Now assume that the coordi-
nate systems (x1, x2) and (x∗

1 , x∗
2 ) are related by a pure translation (zero rotation) such

that,

x1 =x∗
1 +
x1, x2 =x∗

2 +
x2. (30)

According to Equations (25), (26) and (30),

J1 =J ∗
1 , J2 =J ∗

2 , M =M∗ +
x1J1 +
x2J2 (31)

Equation (31) shows that the Ji-integrals are independent of the translation of the
coordinate system whereas the M-integral is not.

4.2. Multi-cracks case

Consider the system shown in Figure 2. In order to evaluate the Ji and M-integrals
for a set of cracks, the closed contours � and �k are used. The contour � encloses all
cracks, while the contour �k encloses only the kth crack. All integrals are evaluated
with respect to the global coordinate system (x1, x2). According to the path-indepen-
dent nature of the Ji and M-integrals, it can be shown that (Chen, 2001a),

J1 =
N∑

k=1

J1k, J2 =
N∑

k=1

J2k, M =
N∑

k=1

Mk, (32)

where J1, J2 and M are defined by Equation (25) using the contour � enclosing all
cracks whereas J1k, J2k and Mk are defined by Equation (25) with the contour �k

associated with the kth crack.
In view of Equations (29) and (31), the Ji and M-integrals defined with respect to

the global coordinate system can be expressed in terms of the integrals J
(k)

1k , J
(k)

2k and
M

(k)
k based on the local coordinate system (xk

1 , x
k
2) and contour �k. Following rela-

tionships are obtained.
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J1 =
N∑

k=1

J1k =
N∑

k=1

[
J

(k)

1k cosβk −J
(k)

2k sin βk

]
, (33a)

J2 =
N∑

k=1

J2k =
N∑

k=1

[
J

(k)

1k sin βk +J
(k)

2k cosβk

]
, (33b)

M =
N∑

k=1

Mk =
N∑

k=1

[
M

(k)
k +xk

01J1k +xk
02J2k

]
(33c)

and J
(k)

1k , J
(k)

2k and M
(k)
k can be expressed in terms of field intensity factors as (Suo

et al., 1992),

J k
1k = 1

4 (K(k)R)T�K(k)R − 1
4 (K(k)L)T�K(k)L, (34a)

J k
2k = 1

4 (K(k)R)T��K(k)R − 1
4 (K(k)L)T��K(k)L +

∫ ak

−ak

(W+ −W−)dxk
1 , (34b)

M
(k)
k =

(
1
4

(
K(k)R

)T
�K(k)R + 1

4

(
K(k)L

)T
�K(k)L

)
ak, (34c)

where W+ and W− denote the magnetoelectroelastic energy density W on the upper
and lower crack faces, respectively; superscripts R and L denote the right and left
crack tips respectively, and

	=−Re(
L−1), (35a)


= [−µ1b1,−µ2b2,−µ3b3,−µ4b4]. (35b)

Equations (33) and (34) present the relationship between the Ji and M integrals
and the field intensity factors for a cluster of arbitrarily oriented cracks.

4.3. Proof of the conservation law of the Ji-integrals

Chen (2001b) proved that for a piezoelectric material subjected to remote uniform
loading,

J1 =
N∑

k=1

J1k =0, J2 =
N∑

k=1

J2k =0. (36)

It can be easily proven that the above identity is also true for magnetoelectroelas-
tic materials. Consider a closed rectangular far-field contour �∞ (abcd) encompassing
all cracks (Figure 2). According to the path-independent nature of the J-integral, the
solutions along contours � and �∞ should be identical. Therefore,

J1 =
∮

�∞

[
1
2

(
σ∞

ij ε∞
ij −D∞

i E∞
i −B∞

i H∞
i

)
dx2 −niσ

∞
ip u∞

p,1ds−niD
∞
i φ∞

,1 ds−niB
∞
i ϕ∞

,1 ds

]

(37a)

J2 =
∮

�∞

[
−1

2

(
σ∞

ij ε∞
ij −D∞

i E∞
i −B∞

i H∞
i

)
dx1 −niσ

∞
ip u∞

p,2ds−niD
∞
i φ∞

,2 ds−niB
∞
i ϕ∞

,2 ds

]

(37b)
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Note that dx1 =0 on ab and cd, and dx2 =0 on da and bc. Equation (37) can be
rewritten as,

J1 = 1
2
σ∞

ij ε∞
ij

(∫ b

a

dx2 −
∫ c

d

dx2

)
− 1

2
D∞

i E∞
i

(∫ b

a

dx2 −
∫ c

d

dx2

)
− 1

2
B∞

i H∞
i

(∫ a

a

dx2 −
∫ c

d

dx2

)

+σ∞
1p
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d

u∞
p,1dx2 −

∫ b

a

u∞
p,1dx2

)
+D∞

1
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d

φ∞
,1 dx2 −

∫ b

a

φ∞
,1 dx2

)
+B∞

1
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d

ϕ∞
,1 dx2 −

∫ b

a

ϕ∞
,1 dx2

)

+σ∞
2p
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b

u∞
p,1dx1 −

∫ d

a

u∞
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)
+D∞

2
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b

φ∞
,1 dx1 −

∫ d

a

φ∞
,1 dx1

)
+B∞

2
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b

ϕ∞
,1 dx1 −

∫ d

a

ϕ∞
,1 dx1

)
,

(38a)

J2 =−1
2
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ij ε∞
ij

(∫ c

b

dx1 −
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dx1
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− 1

2
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b

ϕ∞
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a

ϕ∞
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.

(38b)

It can be easily seen that the first three terms on the right-hand side of Eqs. (38a)
and (38b) vanish because

(∫ b

a
dx2 − ∫ c

d
dx2

)
= 0 and

(∫ c

b
dx1 − ∫ d

a
dx1

)
= 0. Likewise,

the fourth to the ninth terms on the right side of the equations also vanish because
of the uniform remote loading field. Equation (36) therefore holds true for magneto-
electroelastic materials. The conversation law of the Ji-integrals is helpful in checking
the accuracy of numerical results for multiple cracks problems.

5. Numerical results and discussion

Selected numerical results are presented in this section to investigate the fracture
behaviour of a magnetoelectroelastic composite, namely BaTiO3–CoFe2O4. Its pie-
zoelectric phase is BaTiO3, while its piezomagnetic phase is CoFe2O4. The volume
fraction of BaTiO3 is 50%. The material constants of BaTiO3–CoFe2O4 composite
are: C11 = 226 GPa, C12 = 124 GPa, C22 = 216 GPa, C66 = 44 GPa, e21 = −2.2 C/m2,
e22 = 9.3 C/m2, e16 = 5.8 C/m2, ω11 = 56.4 × 10−10 C2/Nm2, ω22 = 63.5 × 10−10 C2/Nm2,
h21 = 290.2 N/Am, h22 = 350 N/Am, h16 = 275 N/Am, γ11 = 297 × 10−6 Ns2/C2, γ22 =
83.5 × 10−6 Ns2/C2, α11 = 5.367 × 10−12 Ns/VC, α22 = 2737.5 × 10−12 Ns/VC (Li, 2000;
Song and Sih, 2003). Plane strain condition is assumed in the analysis and the
remote mechanical loading for all cases considered in the numerical study is given
by σ∞

12 = 0, σ∞
11 = 0, σ∞

22 = 0.6 MPa. The focus of the numerical study is to examine
the dependence of fracture behaviour on electric and magnetic loading. The mechan-
ical loading is therefore not changed. Electric and magnetic loading magnitudes are
relatively small to ensure linear behaviour and are kept well below the fields required
for polarization switching.

5.1. Single crack case

Consider the single impermeable crack shown in Figure 3. The infinite plane is sub-
jected to electric and magnetic fields in the x2 direction in addition to remote tension
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22

Poling direction

E2 ,H2

E2 ,H2

x2

x1

σ

22σ

Figure 3. Geometry of an arbitrarily oriented single crack and remote loading system.

in the same direction. The half-length and orientation of the crack with respect to
the x1 direction are denoted by a and β, respectively. Figure 4 shows the M-integral,
the total energy release rate GA and the mechanical strain energy release rate GM

A at
the crack tip A for β =0◦, 30◦ and 45◦. Note that GA and GM

A are normalized by G0

and GM
0 , respectively, where G0 and GM

0 denote the total energy release rate and the
mechanical energy release rate of an identical horizontal crack (β = 0◦) under pure
tension in the x2 direction.

It is clear from Figure 4 that the M-integral and the total strain energy release
rate show similar effects of applied electric and magnetic loading. For example, both
M and G are decreased by an increasing applied electric or magnetic loading except
in the case of a very weak positive electric field (0<E∞

2 <0.4 KV/m) and a very weak
positive magnetic field (0 < H∞

2 < 0.006 KA/m). This implies that both electric and
magnetic fields generally inhibit the propagation of an impermeable crack. As can be
seen from Figure 4, M and G curves are not symmetric about the zero electric/mag-
netic loading point. The slopes of M and G curves for a negative electric/magnetic
field are slightly higher when compared to a positive electric/magnetic field. A hori-
zontal crack shows higher M and G values when compared to inclined cracks, which
implies that a horizontal impermeable crack is less stable than an inclined crack. The
dependence of magnitude of M and G on crack orientation is substantial. From a
physical point of view the limiting case of β =90◦ should be the most stable config-
uration under the applied loading shown in Figure 3.
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Figure 4. Variation of M-integral, GA/G0 and GM
A /GM

0 with applied electric field and magnetic field.

The mechanical strain energy release rate, GM
A /GM

0 , shows substantially different
dependence on applied electric and magnetic fields when compared to the depen-
dence of M-integral and total energy release rate on electric and magnetic loading.
Mechanical energy release rate increases with increasing positive electric field and
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Figure 5. Geometry of two cracks case and remote loading.

decreases with increasing negative electric fields. This implies that a positive electric
field promotes crack propagation, while a negative electric field inhibits it. Mechani-
cal energy release rate shows negligible dependence on applied magnetic field. This
behaviour is also very different from strong dependence of M and G on magnetic
field observed from Figure 4. Mechanical energy release rate also shows substantial
dependence on crack orientation. Although Park and Sun (1995) argued that fracture
is a mechanical process and mechanical energy release rate show better agreement
with their experiments, there is no fundamental reason to consider only mechanical
energy. The authors are not aware of any experimental results to do a qualitative
comparison with the numerical results shown in Figure 4. However, given that G and
M show similar behaviour and there is no strong theoretical basis for the mechanical
energy release rate, it appears that the use of GM

A as a fracture parameter for mag-
netoelectroelastic materials is questionable.

5.2. Interaction between two cracks

Figure 5 shows an infinite plane with two cracks (AB and CD) subjected to remote
loading. The lengths of the cracks are denoted by 2a and 2a2. In problems involv-
ing more than one crack, the behaviour of cracks is controlled by several geometric
parameters (e.g. length ratio, distance between the cracks and relative crack orienta-
tion) and some of these parameters obviously have to be fixed in a parametric study.
The crack CD is assumed to be a horizontal crack, while the centre of crack AB is
placed along the line CD at a distance ‘r’ from D and has orientation angle β. In the
numerical study, the behaviour of the system is studied for the case a2 = a, r = 1.1a

and 0◦ ≤β ≤180◦.
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Figure 6. Variation of M-integral, GA/G0 and GM
A /GM

0 with orientation angle β for two cracks.

The M-integral and the total energy release rate and the mechanical strain energy
release rate corresponding to tip A are shown in Figure 6 for different values of crack
orientation angle β.

It is noted that both positive and negative electric fields reduce the magnitude of
M and the presence of a positive remote magnetic field in addition to remote tension
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further reduces the magnitude of M. An electric field or a magnetic field therefore
inhibits crack propagation in the case of two cracks. This behaviour is similar to that
noted earlier for a single crack (see Figure 4). Figures 6a and b show that M–inte-
gral has its highest value when the cracks are nearly colinear while the lowest mag-
nitude of M (most stable configuration of crack AB) occurs when the two cracks
are perpendicular to each other. Furthermore, the profiles of M-integral are symmet-
ric about β = 90◦. The above features of M-integral are consistent with the physi-
cal behaviour of the system shown in Figure 5. Figures 6c–6f show the total energy
release rate and the mechanical strain energy release rate at the crack tip A. The
minimum values of the energy release rates correspond to β = 90◦ similar to the M-
integral but the magnitude is zero. The values of GA/G0 or GM

A /GM
0 for β =0◦ and

180◦ are obviously not equal for this case as the energy release rates at crack tip A

is not symmetric about β =90◦. As the crack AB is rotated, the most unstable posi-
tion of AB corresponds to β ≈8◦ (consistent with the M-integral) and both total and
mechanical energy release rates thereafter decreases with increasing β (crack tip A

moves away from tip D) reaching the most stable configuration when β = 90◦. For
β > 90◦, both G and M increases with increasing β. Energy release rates show less
dependence on the applied electric field when compared to the M-integral and the
mechanical energy release rate is slightly increased by a positive electric field. The
influence of magnetic field is also lesser in the case of mechanical energy release rate.

Figure 7 shows the variation of mechanical strain energy release rate and the total
energy release rate at crack tip D with the orientation angle β of crack AB, and
magnitudes of applied electric field and applied magnetic field. It is noted from Fig-
ure 7 that the variation of the total energy release rate of crack CD is similar to
the variation of the M-integral Figure 6. The curves have their minimum value at
and are symmetric about β = 90◦. Furthermore, the variation of mechanical energy
release rate at D with β is also similar to that observed in Figure 6 for the M-integral
but the dependence of GM

D /GM
0 on electric field is different. The orientation angle of

crack AB has a significant effect on the energy release rates of crack CD and the
maximum influence of AB occurs when the two cracks are not co-linear and this is
consistent with the behaviour of M-integral in Figure 6. Based on the results shown
in Figures 4, 6 and 7, it is clear that the mechanical energy release rate predicts
different fracture behaviour under electric and magnetic loading. On the other hand,
the total energy release rate shows physically reasonable results that closely match
the M-integral behaviour for a single crack and horizontally placed crack of a dou-
ble-crack system (Figure 5). It should be noted that when crack CD is allowed to
rotate, the solutions for GD/G0 show more complex dependence on β. According
to equation (33c), M-integral can be considered as a global measure of damage due
to a cluster of cracks whereas energy release rates (total or mechanical) are fracture
parameters associated with a tip of one crack. As such energy release rates cannot
serve as an overall measure of fracture behaviour of a system of cracks.

In order to check accuracy of the numerical results for the double crack case
shown in Figure 5, the conservation law of the J-integral given by Equation (36)
is applied. Figure 8 shows Jij /J0(i, j = 1,2), where J0 is the J-integral of a single
horizontal crack under identical remote loading. It can be easily seen from Figure 8
that the conservation law of the J-integrals is satisfied and high accuracy of present
numerical solutions is confirmed.
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5.3. Cluster of four cracks

A case involving multiple cracks is considered to further demonstrate the application
of the M-integral in damage assessment of magnetoelectroelastic materials. The sys-
tem considered is shown in Figure 9 where an infinite plane containing four cracks of
identical length 2a is subjected to remote tension and magnetic and electric fields in
the x2 direction. The four cracks are symmetrically placed to reduce the total num-
ber geometric parameters governing the behaviour of the system. Numerical results
are presented for the case r/a=1.5, θ =45◦ and β is changed over the range 0◦–180◦.
The M-integral and the total and mechanical strain energy release rates at the crack
tip A are shown in Figure 10.

It is evident from Figure 10 that the M-integral shows physically more realistic
behaviour with the minimum value of M corresponding to β = 90◦, maximum val-
ues for β = 0◦ and 180◦ and symmetry about β = 90◦. For example, when β = 90◦,
all four cracks are parallel to the loading direction and the minimum effect of dam-
age in the medium should be noted as demonstrated by the lowest value of M(= 0)

in Figure 10. On the other hand, for β = 0◦ and 180◦, all cracks are normal to the
loading and the maximum effect of damage is felt as characterized by the maximum
value of M. It is therefore reasonable to assume that M -integral represents a rea-
sonable qualitative measure of damage and could be implicitly related to the effec-
tive elastic moduli of a solid with microcracks. The dependence of M on electric field
and magnetic field is similar to that observed previously for single and double crack
cases. On the other hand, the numerical results for fracture parameters associated
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0 with β for multi-cracks case.

with a single crack tip, such as GA/G0 and GM
A /GM

0 , shown in Figures 10c–10f obvi-
ously have different values for β = 0◦ and 180◦ and do not posses symmetry about
β = 90◦. Both total and mechanical energy release rates are zero for β = 90◦ (similar
to M-integral) but it is difficult to obtain a qualitative relationship between damage
and energy release rates or to implicitly relate energy release rates to effective elastic
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moduli. The results shown in Figures 4, 6 and 10 confirms that M-integral is a bet-
ter and physically more consistent measure of damage associated with cracks when
compared to crack tip based fracture parameters. Certain symmetries associated with
physical systems are directly reflected in the M-integral solutions whereas crack tip
parameters obviously do not show such behaviour for multiple-crack cases. It should
be noted that experimental studies are required to identify a suitable fracture crite-
rion for the present class of materials. Unfortunately, such experimental results are
not available to validate the adequacy of the three fracture parameters considered in
the present study. Nevertheless, theoretical studies are useful in identifying the trends
and dependence of fracture parameters and in identifying suitable fracture parame-
ters for experimental validation.

5.4. Growing crack case

The merit of the M-integral in evaluating damage due to a slowly growing (quasi-
static) crack is demonstrated in this section. Consider the system shown in Figure 5
and assume that the crack AB is a slowly growing crack characterized by increasing
values of a2/a. Figure 11 shows the variation of the M-integral for 0.1 ≤ a2/a ≤ 1.0
for β =0◦ under different remote electric and magnetic field intensities.

As can be seen from Figure 11, the smallest magnitude of the M-integral corre-
sponds to a2/a =0 and the presence of a second crack increases M under both elec-
tric and magnetic loading. M increases nonlinearly with a2/a and the slope of M also
increases rapidly with increasing length of the second crack. For example, when the
length of the growing crack is below 50% of the stationary crack, the increase of M
is less than 30%. However, the value of M nearly doubles as the length increases from
0.5a to a. This behaviour implies that microcracks exceeding a certain critical length
could cause brittle failure of a magnetoelectroelastic material under electromagnetic
loading. As the second crack grows the damage of the medium increases as reflected
by increasing values of M and as in the four-crack case the M-integral behaviour
can be implicitly linked to the reduction of effective elastic modulus of the medium.
Figure 11 shows that the presence of an electric field reduces the magnitude of M but
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the slope of M is not significantly influenced. Similar behaviour is observed when the
medium is subjected to a magnetic field.

6. Conclusions

It is shown that the continuously distributed dislocation method originally proposed
for elastic materials can be extended to solve crack problems in weakly magnetiz-
able magnetoelectroelastic materials in the absence of hysteresis and spin-ordering
effects. The solution for a set of multiple cracks can be reduced to a system of sin-
gular integral equations which can be accurately solved by using a numerical integra-
tion scheme based on Chebyshev polynomials. The M-integral is found to represent
physically reasonable fracture behaviour and could serve as an effective measure for
assessing damage due to single, multiple and slowly growing impermeable cracks. The
applicability of mechanical energy release rate as a fracture criterion for magnetoelec-
troelastic solids is questionable as it shows behaviour very different from that pre-
dicted by the M-integral and total energy release rates for both single and multiple
crack problems. On the other hand, the total energy release rate shows physically rea-
sonable behaviour and good agreement with the M-integral when applied to the cases
of single crack and horizontal double-crack systems. In the case of multiple cracks,
crack tip parameters such as the total and mechanical energy release rates are gen-
erally not effective measures of global damage. Numerical results show an implicit
relationship between the M-integral and effective elastic moduli of a medium with
microcracks. Based on the M-integral, it is found that both positive and negative
electric or magnetic loading generally inhibit crack propagation. In addition, crack
orientation has significant influence on fracture parameters. Experimental studies will
be required to identify a suitable fracture criterion for the present class of materials
and will be useful in the validation of the theoretical models and in determining the
adequacy of the different fracture criteria considered in this study.
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Appendix A

The constitutive equations for x2-polarized magnetoelectroelastic materials can be
expressed as (Parton and Kudryavtsev, 1988),




σ11

σ22

σ33

σ32
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(A.1)
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For plane strain deformations in the x1x2 plane, the constitutive equations can be
expressed as

σ =Cε − eTE −hTH, D= eε +ωE +αH, B=hε +αE +γ H, (A.4)

where

σ =



σ 11

σ 22
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(A.5)

C=



C11 C12 0
C12 C22 0
0 0 C66


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e =
[

0 0 e16

e21 e22 0

]
, h =

[
0 0 h16

h21 h22 0

]
, ω=

[
ω11 0
0 ω22

]
, α =

[
α11 0
0 α22

]
, γ =

[
γ11 0
0 γ22

]
. (A.6)

The Equations (A.4) and (A.5) are also valid for the plane stress case and the cor-
responding matrices C, e, etc can be easily derived from Equations (A.1) to (A.3).
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