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A B S T R A C T   

The integral 
∫∞
− ∞ e− x2 − gx4 dx is used as an introductory learning tool in the study of Quantum Field 

Theory and path integrals. Typically, it is analyzed via perturbation theory. Closed-form solutions 
have been quoted for which I could not find any derivation. Using a simple and elegant trans
formation, the close form solutions for the integral and its even positive integer moments can be 
obtained in terms of Bessel functions.   

1. Introduction 

A common integral in the preparatory studies of Quantum Field Theory (QFT), perturbation theory1 and Feynman diagrams is the 
"toy model": 

Z(g)=
1̅
̅̅
π

√

∫ ∞

− ∞
e− x2 − gx4 dx g ≥ 0. (1) 

The function Z(g) is referred to as the partition function of i) zero dimensional φ4-field theory 1,2 or alternatively ii) the 
zero-dimensional anharmonic oscillator [3]. The references [2,3] state (without derivation) the closed-form solution to the integral given 
by (1): 

Z(g)=
1̅̅̅
̅̅̅̅̅

4πg
√ exp

[
1
8g

]

K1/4

(
1
8g

)

(2) 

Note the modified Bessel function of the second kind Kν , also called a MacDonald function [2], in equation (2). The function can be 
expressed as [4] for |arg z|< π /2, i.e. Re z > 0: 

Kν(z)=
∫ ∞

0
cosh(νt)e− z cosh tdt. (3) 

The expression (2) is in agreement with the formula (Ch. 3.323 No. 3) in Ref. [5], which in turn refers to the formula (Ch. 4.5 No. 
34) in Ref. [6]. No derivations of the formulae are stated in either [5] or [6]. In addition, we note the alternative formulation of the 
closed-form solution for Z(g) in Ref. [2]: 
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Z(g)=
(

1
2g

)1/4

exp
[

1
8g

]

D− 1/2

(
1

2g

)

. (4) 

Equation (4) can be verified from (2) using the identity [7]: 

D− 1/2(z)=
̅̅̅̅̅
z

2π

√

K1/4

(
z2

4

)

Derivation. 
We re-cast (1) as 

Z(g)=
2̅
̅̅
π

√

∫ ∞

0
e− x2 − gx4 dx, (5) 

and define a new variable transformation 

x=
1
̅̅̅g√ sinh

(
ξ
4

)

(6)  

dx=
1

4 ̅̅̅g√ cosh
(

ξ
4

)

(7) 

When switching to the variable ξ, the limits in the integral in (5) are unchanged. Next, we consider the exponent in (5): 

x2 + gx4 = x2 •
[
1+ gx2]= g− 1 sinh2

(
ξ
4

)

•

[

1+ sinh2
(

ξ
4

)]

= g− 1 sinh2
(

ξ
4

)

• cosh2
(

ξ
4

)

=(4g)− 1

• sinh2
(

ξ
2

)

=(4g)− 1
[

cosh2
(

ξ
2

)

− 1
]

=(4g)− 1
[

1
2
(cosh ξ+ 1) − 1

]

=
1
8g

cosh ξ −
1
8g

. (8) 

Using (6), (7), and (8), we re-write (5) as 

Z(g)=
1̅̅̅
̅̅̅̅̅

4πg
√ exp

[
1
8g

]∫ ∞

0
cosh

(
ξ
4

)

e−
1

8g cosh ξdξ. (9) 

The final step is to use the definition (3) to substitute for the integral in (9) to obtain the expression (2): 

Z(g)=
1̅̅̅
̅̅̅̅̅

4πg
√ exp

[
1
8g

]

K1/4

(
1
8g

)

.

This is in agreement with the formula (Ch. 3.323 No. 3) in Ref. [5]. 

1.1Closed form expression for the moments 

The integrand in the partition function (1) is an even function and should thus only have even moments given by the formula: 

〈x2n〉=
1

Z(g)
2̅
̅̅
π

√

∫ ∞

0
x2ne− x2 − gx4 dx. (10) 

We proceed as before using the variable transformations (6), (7) and (3) to re-write (10): 

〈x2n〉=N

∫ ∞

0
sinh2n

(
ξ
4

)

cosh
(

ξ
4

)

e−
1

8g cosh ξdξ. (11) 

The normalization factor N = N (n, g) can be expressed as: 

N (n, g)=
1

Z(g)
e1/8g
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4πg2n+1

√ =

[

gn • K1/4

(
1

8g

)]− 1 

To proceed we make use of 

sinh2n x=
[
cosh2 x − 1

]n
=

∑n

k=0

(
n
k

)

(− 1)n− k cosh2k x,

to transform (11) to 

〈x2n〉=N
∑n

k=0

(
n
k

)

(− 1)n− k
∫ ∞

0
cosh2k+1

(
ξ
4

)

e−
1

8g cosh ξdξ. (12) 

We first use the trigonometric identity for odd powers of cosine [8] and then apply Osborn’s rule [9] to convert the identity to the 
hyperbolic analogue: 
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cosh2k+1 x=
1
4k

∑k

m=0

(
2k + 1

m

)

cosh([2k+ 1 − 2m] • x).

We can now finish up (12): 

〈x2n〉=N
∑n

k=0

(
n
k

)
(− 1)n− k

4k

∑k

m=0

(
2k + 1

m

)∫ ∞

0
cosh

(
[2(k − m) + 1] • ξ

4

)

e−
1

8g cosh ξdξ,

and simplify the integral above using (3)                                                                                                                                             

〈x2n〉=N
∑n

k=0

(
n
k

)
(− 1)n− k

4k

∑k

m=0

(
2k + 1

m

)

K2(k− m)+1
4

(
1
8g

)

. (13) 

In general, we see that (13) is of the form 

〈x2n〉=
[

(4g)n
• K1/4

(
1
8g

)]− 1 ∑n

k=0
c(n)m K2m+1

4

(
1
8g

)

, (14)  

where with a little work we see that the coefficients c(n)m in (14) can be expressed as: 

c(n)m =
∑n

k=m
(− 1)n− k4n− k

(
n
k

)(
2k + 1
k − m

)

(15) 

The coefficients in (15) can be simplified when starting from the top in descending order - for example the first few entries are 

c(n)n = 1c(n)n− 1 = 1 − 2n c(n)n− 2 = n(2n − 3) c(n)n− 3 =
n(1 − 2n)(2n − 5)

3 

The even moments 2n for n = 1, 2, 3 are then given by: 

〈x2〉=
1
4g

⎡

⎢
⎢
⎣

K3/4

(
1

8g

)

K1/4

(
1

8g

) − 1

⎤

⎥
⎥
⎦〈x4〉=

1
16g2

⎡

⎢
⎢
⎢
⎣

K5/4

(
1

8g

)
− 3K3/4

(
1

8g

)

K1/4

(
1

8g

) + 2

⎤

⎥
⎥
⎥
⎦

〈x6〉=
1

64g3

⎡

⎢
⎢
⎢
⎣

K7/4

(
1

8g

)
− 5K5/4

(
1

8g

)
+ 9K3/4

(
1
8g

)

K1/4

(
1

8g

) − 5

⎤

⎥
⎥
⎥
⎦

2. Discussion 

As I was unable to find a derivation of the closed form expressions for φ4-field theory in zero dimensions, I set about deriving the 
expression on my own. Along the way the trick I used to derived the expression also enables one to write a closed form expression for 
the even positive integer moments. I hope these results can lead to further insights on resummation methods used in the perturbative 
approach explored in the works [1–3,10] and references therein. I also discovered an erratum in one of the quoted formulas [6] for 
which the correction is mentioned in appendix. I hope this short letter will be a useful reference for practitioners and students of field 
theory and statistical physics. 
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Appendices.  

A Erratum in Erdélyi et al. 

The formula in Ref. [6] (Ch. 4.5 No. 34) states that 
∫ ∞

0
(2t)− 3/4e− 2a1/2 t1/2

e− ptdt=
[

a
2p

]1/2

exp
[

a
2p

]

K1/4

(
a
2p

)

(16) 

We also note the conditions for (16) are stated as |arg a |< π $| and Re p > 0 [6]. 
We start by using the substitution t = x4 to transform the LHS of (16) to: 

25/4
∫ ∞

0
e− 2a1/2x2 − px4 dx 

We now use a modified version of the transformation in (6) 

x=
4a1/2

p
sinh

(
ξ
4

)

,

which leads to the correct version of (16): 
∫ ∞

0
(2t)− 3/4e− 2a1/2 t1/2 e− ptdt=

[
a

2p2

]1/4

exp
[

a
2p

]

K1/4

(
a

2p

)

B Perturbative Treatment 

Perturbative expansions for Z(g) in (1) can be derived by expanding the exponential in the integral (1) and interchanging the order 
of the resulting summation and integration. In the weak coupling limit g → 0 one obtains the divergent asymptotic expansion [1–3]: 

Z(g) ∼
∑N

n=0
(− 1)nΓ(2n + 1/2)

n!
̅̅̅
π

√ gn (17) 

In the strong coupling limit g → ∞ we obtain the convergent expansion [3]: 

Z(g) ∼ g− 1/4
∑N

n=0
(− 1)nΓ(n/2 + 1/4)

2n!
̅̅̅
π

√ g− n/2 (18) 

Both expansions, (17) and (18), can also be obtained from (1) using the appropriate expansion of Kν(z) [2]. 
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