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Abstract

Dengue poses a significant and multifaceted public health challenge in Sri Lanka, encom-

passing both preventive and curative aspects. Accurate dengue incidence forecasting is piv-

otal for effective surveillance and disease control. To address this, we developed an

Autoregressive Integrated Moving Average (ARIMA) model tailored for predicting weekly

dengue cases in the Colombo district. The modeling process drew on comprehensive

weekly dengue fever data from the Weekly Epidemiological Reports (WER), spanning Janu-

ary 2015 to August 2020. Following rigorous model selection, the ARIMA (2,1,0) model,

augmented with an autoregressive component (AR) of order 16, emerged as the best-fitted

model. It underwent initial calibration and fine-tuning using data from January 2015 to

August 2020, and was validated against independent 2000 data. Selection criteria included

parameter significance, the Akaike Information Criterion (AIC), and Schwarz Bayesian Infor-

mation Criterion (SBIC). Importantly, the residuals of the ARIMA model conformed to the

assumptions of randomness, constant variance, and normality affirming its suitability. The

forecasts closely matched observed dengue incidence, offering a valuable tool for public

health decision-makers. However, an increased percentage error was noted in late 2020,

likely attributed to factors including potential underreporting due to COVID-19-related dis-

ruptions amid rising dengue cases. This research contributes to the critical task of managing

dengue outbreaks and underscores the dynamic challenges posed by external influences

on disease surveillance.

Introduction

Dengue, a viral ailment, holds significant public health importance and is transmitted by vec-

tor mosquitoes, specifically Aedes aegypti and Aedes albopictus. These vectors are arthropods

with a life cycle involving aquatic stages, rendering the transmission of the disease particularly

susceptible to climatic factors [1] such as rainfall, humidity, temperature, and wind patterns.
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Furthermore, the incidence of dengue is contingent upon the necessity for contact between the

vector and the human host, making anthropogenic behavior and host exposure influential fac-

tors. The interplay of seasonal variations, encompassing both climatic factors and vector

dynamics, is likely to exert a substantial impact on the transmission patterns of the disease.

Viral diseases exhibit a wide spectrum of manifestations, ranging from asymptomatic cases to

severe illness. It is important to note that only individuals displaying clinical symptoms are

typically identified and reported as cases. The virus’s capacity to provoke noticeable symptoms

in hosts hinges on its aggressiveness, a quality referred to as virulence.

The incidence patterns of dengue are intricate and may exhibit seasonality due to the afore-

mentioned considerations. These distinctive attributes of dengue have spurred many research-

ers to employ statistical methods for characterising the disease’s epidemiology and offering

robust projections. Nonetheless, a majority of these investigations tend to be context-specific

and confined to local contexts, limiting their broader applicability [2]. Despite this, several

authors have endeavuored to elucidate the disease’s dynamics and make predictive assessments

grounded in observable variables. A significant aspect that has often been overlooked is the

quantification of the impact of latent factors such as viral strain virulence, host and vector

behavioural patterns, and the influence of herd immunity. The scarcity of such analyses can be

attributed to the inherent challenges in precisely quantifying these factors unless sophisticated

mathematical modeling is employed [3]. Consequently, several researchers have resorted to

employing univariate time series analysis, which involves the examination of individual vari-

ables recorded sequentially over time, to address these complexities.

Researchers have employed a variety of methodologies in their pursuit of accurate forecast-

ing. Approaches such as Autoregressive Integrated Moving Average (ARIMA) models, Wave-

let Time Series analysis, General Additive Mixed (GAM) models, Spatial analysis, Non-linear

methods, Multivariate modeling, and Global Circulation models have all found frequent appli-

cation in modelling and projecting the occurrence of communicable diseases, including den-

gue [4]. Among these methods, ARIMA modelling, originally developed by Box and Jenkins,

stands out as a widely utilised approach for the statistical forecasting of time series data [5].

One empirical study, for instance, employed ARIMA modelling to predict the incidence of

dengue in a specific region of Malaysia based on weekly case data [6]. Given that the interac-

tions between vectors and humans play a pivotal role in shaping dengue dynamics, it is reason-

able to postulate that ARIMA models can effectively capture the patterns of dengue incidents

from time series data. This is plausible because these patterns inherently reflect the intricate

interplay of various external factors [7].

The utilisation of ARIMA modelling presents an effective approach to unveil concealed pat-

terns within a dataset, offering forecasts grounded in historical data. This method has gained

prominence for predicting future events by utilising data collected within a predefined tempo-

ral framework [8]. Beyond the conventional basic ARIMA and seasonal ARIMA models,

ensemble ARIMA models have been employed to model dengue incidence by incorporating

patterns from neighbouring regions where dengue cases occur [9]. Accumulating evidence

from prior research underscores the indispensable role of ARIMA modelling as a pivotal tool

in informing decisions related to disease prevention and control [10, 11]. Furthermore, recog-

nising that the suitability of modelling techniques can vary from one location to another, it

becomes apparent that adapting ARIMA models to specific geographic contexts is imperative

to effectively forecast the occurrence of dengue [12].

Since the 1960s, dengue fever has emerged as a paramount concern for public health

authorities in Sri Lanka. It is a critical arboviral disease that exerts a substantial impact on the

population in terms of both morbidity and mortality. Consequently, there is a pressing need

for accurate forecasting and vigilant monitoring to effectively trace the dissemination of
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dengue. The Ministry of Health (MoH) in Sri Lanka routinely manages dengue and other dis-

ease outbreaks on an annual basis. Of particular concern is the severe form of dengue, which

can result in a case-fatality rate of up to five percent. During the period from January to April

2023, there were 3,477 reported cases. The financial burden of dengue control and hospitalisa-

tion in the Colombo district is significant, estimated at a staggering US$ 3.45 million. A sub-

stantial portion of these costs, amounting to 79%, is associated with healthcare staff involved

in control activities, with hospitalisation costs contributing to 46% of the total expenses. Partic-

ularly, the average cost per hospitalisation varies, ranging from US$ 216 to US$ 609 for pediat-

ric cases and from US$ 196 to 866 for adult cases [13].

Therefore, the forecasting of dengue plays a vital role in achieving various objectives,

including the reduction of expenses related to disease control and prevention, the provision of

optimal care for hospitalised patients, the enhancement of cost-effective planning for resource

allocation, and the mitigation of the adverse impacts associated with the disease. Notably, the

Colombo district consistently reports the highest proportion of dengue cases among all dis-

tricts in Sri Lanka across multiple years. Nevertheless, there has been a notable scarcity of

research endeavours dedicated to modelling and predicting the incidence of dengue within the

Sri Lankan context.

Typically, dengue exhibits a seasonal pattern due to the association between mosquito

breeding and the cyclical nature of rainfall. Nevertheless, climate change has the potential to

induce phenological shifts in various species. Consequently, the anticipation of weekly dengue

incidence assumes significant importance, particularly for the timely issuance of public warn-

ings and notifications to public health authorities [14]. This is especially pertinent in countries

with limited resources, such as Sri Lanka, where it is imperative to gain a comprehensive

understanding of the dynamics of dengue transmission to devise more efficient control strate-

gies. Therefore, comprehending the disease’s propagation patterns within shorter time inter-

vals, notably on a weekly basis, is crucial for the prevention and management of dengue in Sri

Lanka.

The primary aim of this research is to identify a suitable ARMA model for the purpose of

characterising and predicting the weekly occurrence of dengue cases within the Colombo dis-

trict of Sri Lanka. This investigation utilises data from the disease surveillance system managed

by the Epidemiology Unit (Epid Unit) under the MoH, which serves as the central authority

responsible for the prevention and management of infectious diseases of public health signifi-

cance. The current study endeavours to address a noteworthy gap in the existing body of

research. By doing so, it aims to contribute fresh perspectives and valuable insights concerning

the prevention and management of dengue fever in the Colombo district of Sri Lanka. In

doing so, it is expected to enhance the understanding of the temporal patterns and dynamics

of dengue transmission, thereby supporting more effective strategies for its prevention and

treatment in this specific geographic region.

Materials and methods

Statistical analysis

The methodology employed for constructing a time series model to analyse the observed data

series adhered to the univariate ARMA models recommended within the framework devised

by Box-Jenkins [15]. In these models, the conventional ARMA (p, q) configuration comprises

a combination of q moving average (MA) and p autoregressive (AR) parameters. This ARMA

(p, q) model can be represented as follows,

Yt ¼ mþ ;1Yt� 1 þ ;2Yt� 2 þ � � � þ ;pYt� p þ et � y1e1 � y2e2 � � � � yqet� q
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Where ;i (i = 1,2,. . .p) and θj (= 1.2. . ..q) are the coefficient AR and MA parts, respectively,

and {et} is the white noise process. The choice of the most appropriate model was determined

in accordance with the procedure advocated by the Box-Jenkins methodology [15]. The initial

step in this process involves ensuring the stationarity of the time series [16]. If the original

series is non-stationary, stationary is generally achieved by taking dth order differencing such

that the series {yt−yt−d} is stationary. Once the stationary analysis was performed by the dth

order differencing, the model is denoted by ARIMA(p,d,q). The p and q of ARIMA(p,d,q) are

determined by comparison of the pattern of the sample autocorrelation function (ACF) and

sample partial autocorrelation function (PACF) with the true ACF and PACF. Generally, few

parsimonious models are initially considered. The true pattern of ACF and PACF is shown in

Table 1.

From the various hypothesised models, the model that exhibits the best fit is determined

through the application of diverse criteria. These criteria encompass the model’s overall signif-

icance, the significance of individual parameters within the model, and the utilisation of sev-

eral information criteria. Among these information criteria, the Akaike Information Criterion

(AIC) and the Schwarz Bayesian Information Criterion (SBIC) are two widely employed indi-

cators. It is anticipated that these criteria will yield their minimum values for the optimal

model selection [16].

AIC ¼ � 2 logðlikelihoodÞ þ 2k; and

SBIC ¼ �
2

T
logðlikelihoodÞ þ logðnÞ∗k; where k ¼＃of parameters

Upon determining the most suitable model, a series of diagnostic assessments were con-

ducted in preparation for the forecasting phase. It was expected that an effective model would

exhibit residuals devoid of any discernible systematic patterns. Additionally, the invertibility of

the underlying ARMA process was examined by scrutinising the roots of the autoregressive

(AR) and moving average (MA) components within the unit circle. Subsequently, the forecast-

ing accuracy of the chosen model was evaluated by comparing it to the actual weekly dengue

incidence data, employing both individual percentage error measures and the Mean Absolute

Percentage Error (MAPE).

Secondary data

Dengue fever cases that were documented and reported originate from the Weekly Epidemio-

logical Reports (WER), encompassing the period from 1 January 2015 to 30 December 2020.

This investigation relies on secondary data sourced from nationally disseminated weekly sur-

veillance reports published by the MoH in Sri Lanka. The dataset employed for this research is

made available in Supplementary S1 Appendix. The statistical analysis for this study was con-

ducted using EViews 12 software.

Table 1. True pattern of ACF and PACF used for model identification.

Model ACF pattern PACF Pattern

AR(p) Exponential decaying, damped sine wave pattern, or both Significant spikes through the first lag

MA(q) Significant spikes through the first lag Exponential decaying

ARMA(p,q) Exponential decaying Exponential decaying

ARMA(l,l) Exponential decaying from lag l Exponential decaying from lag l

https://doi.org/10.1371/journal.pone.0299953.t001
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Results and discussion

Temporal variability of the original series

The Fig 1 time series plot visually depicts the temporal fluctuations in the weekly dengue case

incidence from January 2015 to August 2020.

As depicted in Fig 1, the weekly incidence of dengue cases exhibits a considerable range,

with a minimum of 2 cases recorded during the first week of April 2020 and a maximum of

1972 cases in the third week of July 2017. The central tendency of data is reflected in the mean

of 295 cases (standard deviation, SD = 299) and a median of 201 cases. Especially, Fig 1 high-

lights a period of significantly elevated dengue cases, spanning from the second week of June

to the first week of September. It is worth noting that since the country’s initial dengue out-

break in 1965–1966, the highest incidence was reported in 2017, with a staggering 186,101

cases. Markedly, more than 25% of the country’s dengue cases were concentrated within the

Colombo district during this period.

These data points clearly exhibit outlier characteristics when assessed using both the inter-

quartile range method (Q1-1.5IQR, Q3+1.5IQR) and a common heuristic criterion (z-score

exceeding 3 or falling below -3). Nevertheless, it is imperative to underscore that, during the for-

mulation of our ARIMA model, we refrained from excluding these data points on the grounds

that they represent genuine and observed values integral to the current analysis. Furthermore,

as portrayed in Fig 1, the time series plot underscores the non-stationary nature of the original

observed series. This assertion was corroborated through the utilisation of the Autocorrelation

Function (ACF) plot (Fig 2) and the Augmented Dickey-Fuller (ADF) test [17]. The correlo-

gram of the initial series firmly established its non-stationarity, evidenced by the first few auto-

correlations significantly deviating from zero, with a gradual and sustained decline across the

lags. The results obtained from the ADF test for the initial series were inconclusive (ADF Test

statistic = -2.247, p = 0.135), thereby confirming its non-stationary character.

Fig 1. Time series plot of the weekly incidence of dengue cases.

https://doi.org/10.1371/journal.pone.0299953.g001
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Differencing the data series

To achieve the stationarity of the data series, first-order differencing was performed. Fig 3

shows the trend in the first differenced series.

Fig 3 exhibited a more pronounced mean reversion pattern, indicating a greater degree of

stability over time. Consequently, the first-order differenced data series appeared to exhibit

stationarity. This supposition was substantiated by the Augmented Dickey-Fuller (ADF) test

conducted on the first differenced series, which revealed statistical significance at a five percent

significance level (ADF = -5.277, p = 0.000). Thus, it can be asserted with 95% confidence that

the first-order differenced data series is stationary.

Possible models

To identify the possible parsimonious model for the stationary series, ACF and PACF were

obtained, and the correlogram of the first differenced series is shown in Fig 4.

Both ACF and PACF plots, as displayed in Fig 4, revealed a swift decline in values after lag

2, with statistically significant correlations only at that particular lag. This pattern suggests that

both the ACF and PACF exhibit an analogous exponential decay characteristic. Consequently,

the following three models could be identified, namely ARIMA (2,1,0), ARIMA (0,1,2), and

ARIMA (2,1,2), as the most pertinent provisional models to advance with.

Identification of the best-fitted model

A comparison of those three ARIMA models based on conventional criteria for assessing the

goodness is shown in Table 2.

The outcomes presented in Table 2 reveal that all parameters within the ARIMA (2,1,2)

model lack statistical significance, rendering it an unsuitable choice for further consideration.

Fig 2. Correlogram of the original series of data. Note: [AC = Autocorrelation, PAC = partial autocorrelation].

https://doi.org/10.1371/journal.pone.0299953.g002
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Conversely, the results in Table 2 demonstrate that all parameters within the ARIMA (2,1,0)

and ARIMA (0,1,2) models are statistically significant, thus establishing both as potential can-

didates for forecasting. However, given that conspicuous outliers were not excluded from the

original series, from a modelling perspective, ARIMA (2,1,0) emerges as the more favourable

candidate. This is attributed to its capacity to directly capture the influence of past values, dis-

tinguishing it as a more robust choice compared to ARIMA (0,1,2). Furthermore, the σ2 vola-

tility in ARIMA (2,1,0) was considerably less than that in ARIMA (0,1,2). Both AIC and SBIC

statistics in ARIMA (2,1,0) were less than the corresponding values in ARIMA (0,1,2). There-

fore, ARIMA (2,1,0) was chosen as the best-fitted model with comparing forecast values from

ARIMA (2,1,0) and ARIMA (0,1,2). The ACF and PACF of the residuals of the ARIMA (2,1,0)

are shown in Fig 5.

Fig 5 shows that, up to lag 14, the Q-statistic probabilities for the ACF were not statistically

significant. Nevertheless, the correlogram shown in Fig 5 indicates significant correlations

after lag 16 in both ACF and PACF. Therefore, a re-estimation was performed by adding AR

(16) and MA (16) separately to ARIMA (2,1,0). When assessing these metrics, namely AIC,

SBIC, and σ2 volatility, it becomes evident that the inclusion of AR (16) terms is more suitable

than introducing MA (16) terms. Accordingly, ARIMA (2,1,0) + AR (16) was considered the

best-fitted model to represent the weekly incidence of dengue in the tested series. Under these

circumstances, it was observed that AR (1) lacked statistical significance. As a result, a revised

model was developed, incorporating only AR (2) and AR (16) for the stationary series, as indi-

cated in Table 3.

An examination of the Autocorrelation Function (ACF) plot for the residuals of the best-fit-

ted model affirmed that the errors displayed a random pattern. Furthermore, the plot’s

Fig 3. Time series plot of the first order differencing of the original series.

https://doi.org/10.1371/journal.pone.0299953.g003
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representation of residuals, as well as the predicted values, illustrated that the residuals main-

tain a constant variance. Finally, Fig 6 demonstrates that the distribution of residuals adheres

to a normal pattern [18]. An examination of the ACF plot for the residuals of the best-fitted

model affirmed that the errors displayed a random pattern. Furthermore, the plot’s representa-

tion of residuals, as well as the predicted values, illustrated that the residuals maintain a con-

stant variance. Finally, Fig 6 demonstrates that the distribution of residuals adheres to a

normal pattern.

The two information criteria used to assess the goodness of fit in the best-fitted model

yielded values of 11.91198 and 11.96197, respectively. The mean absolute percentage error

(MAPE) measured at 0.3184, suggesting that the fitted model is well-suited for forecasting pur-

poses. The Theil Inequality Coefficient (U) registered at 0.108, with an exceedingly small bias

Fig 4. Correlogram of the first order differenced series.

https://doi.org/10.1371/journal.pone.0299953.g004

Table 2. Comparison of the selected ARIMA models.

Indicators Model

ARIMA (2,1,0) ARIMA (0,1,2) ARIMA (2,1,2)

Parameter–AR (1) significant not applicable not significant

Parameter–AR (2) significant not applicable not significant

Parameter–MA (1) not applicable significant not significant

Parameter–MA (2) not applicable significant not significant

σ2_Volatility 8743.8 8770.2 8738.7

AIC 11.935 11.938 11.940

SBIC 11.972 11.975 11.991

https://doi.org/10.1371/journal.pone.0299953.t002
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proportion of 0.000008. Given the proximity of U to 0, this further underscores the model’s strong

predictive capabilities [19]. Examination of the AR roots indicated that they are located within the

unit circle, confirming the stability of the final model. Taken together, these results provide com-

pelling evidence of the robustness and stability of the ARIMA (2,1,0) + AR (16) model.

A comparison between the observed and predicted values for both the training and valida-

tion datasets (out of the sample) is illustrated in Figs 7 and 8, respectively.

Fig 5. Correlogram of the residuals of the ARIMA model (2,1,0).

https://doi.org/10.1371/journal.pone.0299953.g005

Table 3. Details of the parameters of ARIMA (2,1,0) + AR (16).

Variable Coefficient Std. Error t-Statistic Prob

C -0.529103 7.472788 -0.070804 0.9436

AR (2) 0.262049 0.054137 4.840446 0.0000

AR (16) -0.16328 0.027749 -5.884273 0.0000

SIGMASQ 8475.277 308.0737 27.51055 0.0000

S.E. of regression 92.69183 Akaike info criterion 11.91198

Sum squared residual 2500207 Schwarz Bayesian Info criterion 11.96197

Log-likelihood -1753.017 Hannan-Quinn criterion 11.93200

F-statistic 10.0565 Durbin-Watson statistic 1.960523

Prob(F-statistic) 0.000003

https://doi.org/10.1371/journal.pone.0299953.t003
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Fig 7 demonstrates a noteworthy level of consistency between the observed and predicted

values. This observation is substantiated by a robust and statistically significant correlation (r

= .954, p = 0.000) between the actual and forecasted values. This correlation signifies that the

Fig 6. Distribution of the residuals of the best fitted models.

https://doi.org/10.1371/journal.pone.0299953.g006

Fig 7. Forecasted and actual values of the incidence of dengue for the training data set.

https://doi.org/10.1371/journal.pone.0299953.g007
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model’s predictive pattern effectively captures the frequency of dengue cases. In Fig 8, the

graph displays the forecasted and actual incidence of dengue from September to December

2020, thereby representing a short-term prediction.

The MAPE for the validation set is 1.554, which is markedly higher than the MAPE of

0.3184 for the training set. Additionally, the correlation between the actual and predicted val-

ues in the validation set is -0.662 (p = 0.005). These findings suggest that the new model exhib-

its superior performance when applied to the training dataset in comparison to the validation

set. While there are instances where the predictions seem to overestimate the actual values in

the validation set, the overall pattern of the model remains suitable for forecasting dengue inci-

dence. However, it is significant that the model tends to overestimate cases post-October 2020,

with percentage errors exceeding 100%. This particular period, covering early September 2020

to mid-December 2020, coincided with the effects of the COVID-19 pandemic in Sri Lanka.

During this time, factors such as reduced social mobility, disruptions in human activities

(especially in dengue-prone environments), and the allocation of limited resources for pan-

demic management likely contributed to an underreporting of dengue cases. Public health

officials may have been compelled to prioritise pandemic management over dengue control

due to factors such as cost constraints, vaccine distribution, and strained healthcare resources.

Vector-borne diseases result from the transmission of parasites, bacteria, or viruses through

intermediary hosts, such as mosquitoes, ticks, and fleas. In addition to dengue, common vec-

tor-borne diseases prevalent in Sri Lanka include chikungunya, yellow fever, Zika virus, and

Japanese encephalitis. According to the World Health Organisation (WHO) [20], vector-

borne diseases account for approximately 17% of all infectious diseases and are responsible for

over 700,000 deaths annually. These diseases are most prevalent in tropical and subtropical

Fig 8. Forecasted and actual values of the incidence of dengue for the validation set (September—December 2020).

https://doi.org/10.1371/journal.pone.0299953.g008
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regions, like Sri Lanka, where recent years have witnessed outbreaks of dengue, malaria, yellow

fever, and Zika virus in numerous countries.

ARIMA models with seasonal multiplication (SARIMA) have been applied for malaria fore-

casting across different districts in Sri Lanka. In the context of short-term malaria prediction

models, an empirical investigation has highlighted significant variations in the forecasting

errors of SARIMA models among these districts [21]. The authors emphasised that while the

inclusion of rainfall as a covariate could enhance the predictive accuracy of SARIMA models

in certain districts, it could conversely lead to deteriorated predictions in other Sri Lankan dis-

tricts. It is worth noting that in this study as well, individual prediction errors have not been

calculated.

There are four dengue virus serotypes designated as DENV 1–4. Each of these serotypes has

dominated dengue outbreaks in specific years [22]. Given that the severity of an epidemic

often correlates with the prevailing serotype, mathematical modelling can serve as a valuable

instrument for formulating hypotheses regarding the emergence of new strains.

Informed decision-making is consistently bolstered by precise forecasting. Diseases with a

substantial public health impact, such as dengue, can benefit from the application of mathe-

matical and statistical models, particularly ARIMA models. Furthermore, these models are

poised to play a pivotal role in optimising the allocation of limited resources and maintaining

the integrity of public health services in Sri Lanka, particularly during critical periods. Antici-

pating the number of cases in advance holds the potential to reduce the substantial outflows of

foreign currency associated with the importation of medications.

Contribution of this study

In Sri Lanka, the risk of dengue fever is pervasive and extends throughout the year. Neverthe-

less, the transmission rates of the disease typically reach their peak during the two monsoon

seasons in May/June and October/November. The MoH recognises dengue fever and other

mosquito-borne illnesses as growing public health concerns within the country. Sri Lankan

health authorities have recently concentrated their efforts on the development of an "early

warning system" aimed at reducing dengue incidence rates and efficiently allocating limited

public health resources to successful intervention programs. Over the past decade, several local

researchers [23–25] have undertaken investigations to forecast dengue incidents at various

temporal scales. Most of these efforts have revolved around regression models and univariate

ARMA models. However, dengue is the result of intricate interactions among vectors, patho-

gens, and human populations. Consequently, a multitude of factors, encompassing ecological,

environmental, epidemiological, and social elements, influence the distribution patterns of

dengue outbreaks. These distribution patterns and epidemic cycles can undergo transforma-

tions when novel vector control strategies and policies are implemented. Consequently, the

process of selecting suitable variables for regression models becomes inherently challenging.

Furthermore, it is essential to acknowledge that due to the dynamic nature of the influenc-

ing variables described earlier, traditional regression models may face limitations in generating

precise forecasts. When juxtaposed with regression models, ARIMA models emerge as a more

robust and dependable approach. This is because ARIMA models inherently account for the

effects of these external factors by indirectly incorporating them into the time series modelling

process.

The validation of the model, both against the training dataset and an independent dataset,

represents a distinctive feature of the ARMA model developed in this current study. Most

research that endeavours in this domain have typically omitted the testing of models against

separate datasets. While the selection of the best-fitting model has traditionally relied on
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statistical indicators like AIC, SBIC, and MAPE, comparisons between forecasted values and

the corresponding observed data have often been neglected. This study addresses these gaps by

establishing the ARIMA model as a dependable forecasting tool, particularly in the context of

the rapid proliferation of dengue cases in the Colombo district, Sri Lanka. In this study, an

additional aspect was considered, namely, the percentage errors associated with each observed

data value. The authors of this study deemed this aspect crucial from both a modelling and

management perspective. Furthermore, the model devised in this research deviates from clas-

sical ARMA models. To enhance the fit of the ARIMA model, an unconventional approach

was taken: the introduction of an exclusive secondary parameter, AR (16). This addition was

made distinctly for AR (16) and MA (16) separately. Based on the available literature, no simi-

lar methods have been identified. Consequently, it is reasonable to assert that this study repre-

sents an inaugural exploration, verifying the ARIMA model as a reliable instrument for

dengue forecasting.

Limitations of the study

The study has several limitations. First, the quality and completeness of the data are crucial, as

inaccuracies or missing data in the historical dengue records can bias the model and reduce its

effectiveness. Second, the introduction of the AR (16) term in the ARIMA model adds com-

plexity, potentially affecting its interpretability and real-world usability. The assumption of sta-

tionarity post-differencing may not always be straightforward, impacting model performance.

The study exclusively relies on time series data and overlooks external factors like climate and

public health interventions, limiting model accuracy. The relatively short validation period

could be extended for a more robust model. Generalisability is limited to the Colombo district,

and the model’s applicability elsewhere is uncertain. The study doesn’t explicitly address out-

lier handling, a critical aspect in time series forecasting, and provides minimal discussion on

parameter interpretation, essential for public health decision-makers. The cutoff of data in

December 2020 may not consider recent dengue dynamics or public health changes. The selec-

tion criteria of the model rely on statistical measures, overlooking clinical relevance and practi-

cal utility. Moreover, within the scope of this research, projections were executed at a

consistent geographical level, specifically confined to the Colombo district. This approach con-

trasts with the work undertaken by [26], where time series models were formulated for fore-

casting dengue incidents, transcending country-level, health district, and state-level

considerations. It is noteworthy that, unlike COVID, dengue is not equally prevalent across all

districts in Sri Lanka; its primary occurrence is concentrated in the Colombo and Gampaha

districts. To facilitate the development of a unified model applicable to both districts a dummy

variable can be considered along with weekly dengue incidents for Gampaha district. Finally,

the study does not fully account for inherent uncertainty and variability in disease transmis-

sion. Discussing prediction intervals and uncertainty measures would provide a more compre-

hensive view of the performance of the model. Addressing these limitations will enhance the

accuracy and suitability of the model for dengue forecasting in Sri Lanka.

Policy implementation

Dengue stands as the most critical vector-borne disease in Sri Lanka, commanding heightened

attention from health authorities who prioritize its control. The effective management of an

infectious disease like dengue hinges on the establishment of a robust disease surveillance sys-

tem. It is imperative to recognise that this surveillance system is susceptible to compromise

when concurrent health events of considerable magnitude, characterised by substantial health-

care expenses and vaccine-related costs, such as the COVID-19 pandemic, enter the healthcare
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landscape. From an economic and policy perspective, this can lead to a weakened disease sur-

veillance system, potentially resulting in increased healthcare expenditures and higher fatality

rates. Consequently, health authorities must take proactive measures to mitigate the impact of

these significant health events on disease surveillance, ensuring its resilience. Given the typical

one-year lag period associated with health data, forecasting emerges as an ideal technique for

the early detection of deviations in health patterns. Such early identification equips health

authorities with the capability to allocate resources in advance, guided by data-driven optimi-

sation strategies. This proactive approach facilitates the effective management of health

resources and contributes to a more efficient and responsive healthcare delivery system.

Conclusion

Dengue cases in Sri Lanka have consistently exhibited the highest incidence within the

Colombo district across all recorded years. Given this persistent pattern, acquiring advanced

insights into the short-term distribution of dengue cases becomes imperative for the MoH to

institute timely preventive measures and interventions. In this context, the application of the

Box–Jenkins methodology, specifically the ARIMA (2,1,0) model supplemented with an addi-

tional AR (16) term, emerges as a robust statistical model. This model has demonstrated its

capacity for effectively forecasting weekly dengue cases, making it a viable proposition for

short-term forecasting of weekly dengue incidents within the confines of the Colombo district.

The utilisation of this model holds the potential to enhance the preparedness and response

strategies of MoH, ultimately contributing to the proactive management of dengue outbreaks

in the region.

The identification of the autoregressive order stands as a pivotal step in ARIMA modelling,

one that significantly influences the effectiveness of the model. The conventional practice sug-

gests the use of low values for both p and q, typically in the range of 0 to 2, based on the

observed theoretical pattern of the ACF and PACF of the stationary series. However, when it

comes to determining the theoretical ACF for a higher order of autoregressive terms, this

becomes a challenging task, especially when only a limited number of higher-order autocorre-

lations are discernible. In the context of the present study, the authors have introduced a novel

approach for the determination of the autoregressive order. This approach centres around the

identification of a specific higher-order autocorrelation that exhibits significance. Conse-

quently, the ARIMA (2,1,0) model, augmented by the inclusion of an AR (16) term, has

emerged as a robust statistical model for the purpose of forecasting dengue cases. Notably, the

incorporation of the AR (16) term represents a distinctive aspect of this approach, setting it

apart as an innovative method. To validate the performance and reliability of the model, it was

rigorously tested against an independent dataset, confirming its goodness and suitability for

accurate dengue case forecasting. This methodological innovation serves as a valuable addition

to the field of time series modelling for infectious disease prediction.

Furthermore, it is noteworthy that the model’s errors exhibit the characteristics of white

noise, emphasising the suitability and reliability of ARIMA (2,1,0) with AR (2) and the supple-

mentary inclusion of AR (16) for forecasting the incidence of dengue in the Colombo district.

This model is instrumental in optimising responses to outbreak management, particularly in

predicting potential dengue outbreaks within the district, addressing a quintessential concern

in ARIMA modelling. However, it is imperative to acknowledge that certain challenges persist

in this modelling approach. While the incorporation of AR (16) has demonstrated superiority

over alternative models, it is associated with specific limitations, such as underestimating the

training set values while overestimating the validation set values. As a result, future research

endeavours should concentrate on refining and enhancing methods to mitigate these errors.
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These models warrant continuous refinement to rectify their shortcomings. Moreover, the

refinement and development of such models hold particular significance during the high-risk

periods of May/June and October/December when dengue occurrences reach their peak. The

ability to generalise these findings to the broader Sri Lankan context would be immensely ben-

eficial in the realm of comprehensive disease surveillance and health policy planning. Conse-

quently, improving these models and addressing their limitations is an essential undertaking

to bolster the effectiveness of dengue outbreak prediction and management in Sri Lanka.
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