
Development of Real-Time, Self-Learning 

Artificial Intelligence-Based Algorithms 

for Non-Intrusive Energy Disaggregation 

in a Multi-Appliance Environment 

 

 
Madhawa Herath 

（DP17 8502 92） 

Doctor of Philosophy  

 

 

 

 

 

 

 

 
Faculty of Engineering  

Sri Lanka Institute of Information Technology  

 

December 2023 

 

 

 

 



 i 

Declaration 

 

I hereby declare that to the best of my knowledge, this submission is my own work and 

it neither contains direct material previously published nor written by another person or 

material, which to substantial extent, has been accepted for the award of any other 

academic qualification of a university or other institute of higher learning except where 

acknowledgement is made in the text. 

 

Certified by 

Signature        : ……………………………………. 

Date                : December 15th, 2023 

 

Name of Supervisor  I : Prof. Migara Liyanage  

Signature :…… ………………………………. 

Date                               : December 17th, 2023 

 

Name of Supervisor  II : Dr. Chitral Angammana  

Signature :……………………………………. 

Date                            : December 16th, 2023 

 

 

 

 



 ii 

Acknowledgment  

During my doctoral journey, I had the opportunity to learn about emerging 
technologies like Artificial Intelligence and apply them in real-world applications. It was 
a rare privilege to work on a real-life project that addressed the crucial issue of changing 
consumer behavior towards energy conservation. The combined efforts in algorithm 
development, programming, and simulation, as well as data collection and verification, 
made the research experience diverse and enriching. 

I am deeply grateful to my supervisors, Prof. Migara Liyanage and Dr. Chitral 
Angammana, who are enthusiastic technology practitioners. Their wisdom and 
knowledge in engineering have shaped me into a critical thinker and problem solver. I 
would like to express my sincerest appreciation to them for their invaluable guidance, 
support, and encouragement throughout my doctoral journey. Their expertise, patience, 
and unwavering belief in my abilities have played a pivotal role in shaping both the 
research project and my growth as a scholar. I would also like to express my gratitude 
to Prof. George Mann for his invaluable guidance and encouragement throughout this 
journey. His eminent research experiences have played a pivotal role in enhancing my 
scientific writing skills. 

I extend my heartfelt appreciation to the Sri Lanka Institute of Information 
Technology, including Chancellor Prof. Lakshman Ratnayake, Vice-Chancellor Prof. 
Lalith Gamage, Senior Deputy Vice-Chancellor and Provost Prof. Nimal Rajapakse,  
Pro-Vice Chancellor Academic Prof. Rahula Attalage, and Dean of the Faculty of 
Engineering Prof. Saman Thilakasiri, as well as the faculty and staff of the Faculty of 
Engineering. Their dedication to academic excellence and provision of resources have 
been crucial in facilitating the successful completion of this thesis. The supportive 
research environment and access to necessary facilities have been integral to the 
accomplishment of this work. 

I am grateful to Mr. Thakshila Thilakanayake for his valuable support in 
implementing algorithms using the Python programming language. Additionally, I 
would like to thank Mr. Chaminda Prabash and Mr. Damith Nishantha for his assistance 
in designing and fabricating the local energy data logger and aiding in data collection. 

I express my gratitude to Dr. Oscar De Silva from the Faculty of Engineering and 
Applied Science, Memorial University of Newfoundland, Canada, for agreeing to serve 
as my external examiner. I would also like to thank Prof. Chandimal Jayawardane for 
his service as my internal examiner. I appreciate the time they dedicated to reviewing 
my thesis, and their comments and suggestions have immensely contributed to 
improving its quality. 

I would like to acknowledge my fellow graduate students and colleagues for their 
camaraderie, engaging intellectual discussions, and constant encouragement. Their 
friendship and shared experiences have made this academic journey more enjoyable and 
fulfilling. 

My deepest appreciation goes to my parents, Mrs. Jayalatha Nissanka and Mr. 
Ashoka Herath, my loving wife, Mrs. Bhagya Warnasooriya, and my children, Kumali 
Herath and Thenuja Herath, for their unwavering love, encouragement, and sacrifices 



 iii 

throughout this entire endeavor. Their constant support and belief in me have been an 
endless source of strength and motivation. 

Lastly, I want to express my deepest gratitude to all the individuals who have played 
a part, whether big or small, in shaping my academic and personal growth. Your 
guidance, encouragement, and belief in my abilities have been instrumental in helping 
me reach this significant milestone. This research would not have been possible without 
the support and contributions of all these individuals, and for that, I am eternally 
grateful. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv 

Abstract  

Electricity serves as a cornerstone in modern economies, with demand in residential 
and commercial sectors rapidly increasing in recent years. Enabling real-time 
monitoring of individual appliance-wise energy consumption and delivering user 
feedback is essential for future energy conservation initiatives. Energy disaggregation 
becomes imperative in furnishing consumption statistics for individual appliances. The 
acquisition of appliance-specific energy consumption in a non-intrusive manner, 
without the need for sensors on each device but by utilizing readings from the main 
household energy meter, highlights Non-Intrusive Load Monitoring (NILM) as a 
promising solution. NILM, leveraging the capabilities of smart meters and 
advancements in computational power, gains popularity for its effectiveness in 
disaggregating and analyzing energy consumption patterns. 

This study introduces an Artificial Intelligence (AI)-based NILM solution capable of 
disaggregating the energy consumption of multiple appliances while adapting to new 
appliances and their evolving behaviors. Among various NILM approaches, Neural 
Network (NN)-based models demonstrate promising disaggregation capabilities. 
However, the selection of the most suitable NN type or architecture poses a challenge 
due to the multitude of approaches in literature. To address this issue, the study 
standardizes and compares different NNs, with results showing that the Convolutional 
Neural Network (CNN) exhibits superior prediction accuracy and speed. This study also 
investigates the impact of different appliances and their consumption profiles on 
disaggregation performance, rigorously testing parameters such as NN architecture, 
input-output mapping topologies, data preprocessing, and hyperparameters. This leads 
to the development of guidelines for future NILM studies. Additionally, the study 
introduces a hierarchical plug-and-play modular-based model for appliance anomaly 
detection, extending the application of NILM and overcoming limitations in anomaly 
detection literature. 

This study investigates two-dimensional (2D) input-based NILM solutions for 
predicting appliance energy consumption profiles and classifying appliances. Unlike 
conventional NN-based models using 1D signals, representing the aggregate energy 
signal as a 2D image improves performance by leveraging feature extraction capabilities 
of NNs and preserving vital temporal information and signal amplitude relationships. 
Various TSS to 2D image conversion methods for NILM were tested, including Gramin 
Angular Summation Field (GASF), Gramin Angular Difference Field (GADF), 
Recurrent Plot (RP), and Markov Transition Field (MTF), with GADF outperforming 
other methods. In addition, the study introduces a simple yet powerful 2D input 
mechanism for time series data, specifically energy consumption data. This mechanism 
will be integrated into a CNN-based energy disaggregation model for the first time in 
the NILM domain, with the aim of improving overall performance. While the proposed 
method excels over 1D input-based models in training, it is observed that the novel 2D 
input method requires augmentation in training data volume, data mixing, NN depth, 
and hyperparameter tuning to achieve superior generalization capabilities. Furthermore, 
aggregate energy signal-based Voltage-Current (V-I) trajectory plots were investigated 
for fully non-intrusive appliance classification, demonstrating high accuracy. 
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The study proposes a single NN architecture named "One-Shot." This model exhibits 
the capability to simultaneously disaggregate multiple appliances, offering a more 
efficient alternative to the intricate and computationally demanding existing NN-based 
NILM models that necessitate separate NNs for each appliance. The efficacy of this 
approach is evaluated across multiple input-output mapping configurations, with the 
multi-point multi-bin model proving superior. To address challenges associated with 
manual model re-training for new appliances and adapting to evolving consumption 
patterns, a self-learning module is incorporated, enhancing the performance of the One-
Shot model. To overcome issues related to excessive hyperparameter tuning and 
insufficient training data, the study presents an unsupervised model based on Blind 
Source Separation (BSS), utilizing Independent Component Analysis (ICA) to separate 
appliance energy signals from the aggregate signal. 

Developing more reliable disaggregation models in local environments requires a 
local energy dataset. For this purpose, the study creates a local energy dataset from 
households using a custom-designed data logger, capturing both low and high-frequency 
energy data at appliance, circuit, and main energy meter levels. This dataset is verified 
using the One-Shot model developed in this study. In summary, this study advances the 
field of NILM by introducing AI-based solutions, innovative approaches, and 
comprehensive guidelines. Ultimately, these contributions aim to foster energy 
conservation and enhance efficiency in residential and commercial settings globally. 
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