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Abstract

Electricity serves as a cornerstone in modern economies, with demand in residential
and commercial sectors rapidly increasing in recent years. Enabling real-time
monitoring of individual appliance-wise energy consumption and delivering user
feedback is essential for future energy conservation initiatives. Energy disaggregation
becomes imperative in furnishing consumption statistics for individual appliances. The
acquisition of appliance-specific energy consumption in a non-intrusive manner,
without the need for sensors on each device but by utilizing readings from the main
household energy meter, highlights Non-Intrusive Load Monitoring (NILM) as a
promising solution. NILM, leveraging the capabilities of smart meters and
advancements in computational power, gains popularity for its effectiveness in
disaggregating and analyzing energy consumption patterns.

This study introduces an Artificial Intelligence (Al)-based NILM solution capable of
disaggregating the energy consumption of multiple appliances while adapting to new
appliances and their evolving behaviors. Among various NILM approaches, Neural
Network (NN)-based models demonstrate promising disaggregation capabilities.
However, the selection of the most suitable NN type or architecture poses a challenge
due to the multitude of approaches in literature. To address this issue, the study
standardizes and compares different NNs, with results showing that the Convolutional
Neural Network (CNN) exhibits superior prediction accuracy and speed. This study also
investigates the impact of different appliances and their consumption profiles on
disaggregation performance, rigorously testing parameters such as NN architecture,
input-output mapping topologies, data preprocessing, and hyperparameters. This leads
to the development of guidelines for future NILM studies. Additionally, the study
introduces a hierarchical plug-and-play modular-based model for appliance anomaly
detection, extending the application of NILM and overcoming limitations in anomaly
detection literature.

This study investigates two-dimensional (2D) input-based NILM solutions for
predicting appliance energy consumption profiles and classifying appliances. Unlike
conventional NN-based models using 1D signals, representing the aggregate energy
signal as a 2D image improves performance by leveraging feature extraction capabilities
of NNs and preserving vital temporal information and signal amplitude relationships.
Various TSS to 2D image conversion methods for NILM were tested, including Gramin
Angular Summation Field (GASF), Gramin Angular Difference Field (GADF),
Recurrent Plot (RP), and Markov Transition Field (MTF), with GADF outperforming
other methods. In addition, the study introduces a simple yet powerful 2D input
mechanism for time series data, specifically energy consumption data. This mechanism
will be integrated into a CNN-based energy disaggregation model for the first time in
the NILM domain, with the aim of improving overall performance. While the proposed
method excels over 1D input-based models in training, it is observed that the novel 2D
input method requires augmentation in training data volume, data mixing, NN depth,
and hyperparameter tuning to achieve superior generalization capabilities. Furthermore,
aggregate energy signal-based Voltage-Current (V-I) trajectory plots were investigated
for fully non-intrusive appliance classification, demonstrating high accuracy.



The study proposes a single NN architecture named "One-Shot.” This model exhibits
the capability to simultaneously disaggregate multiple appliances, offering a more
efficient alternative to the intricate and computationally demanding existing NN-based
NILM models that necessitate separate NNs for each appliance. The efficacy of this
approach is evaluated across multiple input-output mapping configurations, with the
multi-point multi-bin model proving superior. To address challenges associated with
manual model re-training for new appliances and adapting to evolving consumption
patterns, a self-learning module is incorporated, enhancing the performance of the One-
Shot model. To overcome issues related to excessive hyperparameter tuning and
insufficient training data, the study presents an unsupervised model based on Blind
Source Separation (BSS), utilizing Independent Component Analysis (ICA) to separate
appliance energy signals from the aggregate signal.

Developing more reliable disaggregation models in local environments requires a
local energy dataset. For this purpose, the study creates a local energy dataset from
households using a custom-designed data logger, capturing both low and high-frequency
energy data at appliance, circuit, and main energy meter levels. This dataset is verified
using the One-Shot model developed in this study. In summary, this study advances the
field of NILM by introducing Al-based solutions, innovative approaches, and
comprehensive guidelines. Ultimately, these contributions aim to foster energy
conservation and enhance efficiency in residential and commercial settings globally.
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