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Abstract

Gene expression studies on gene transcription to synthesize functional gene products have been used 
extensively to understand biological differences between different disease conditions. Thus, this study 
determines differentially expressed genes in dengue infection during disease progression following 
the three phases: Febrile, Defervescence and Convalescent. Integrative data analysis of two publicly 
available longitudinal datasets in Gene Expression Omnibus (GEO) database has been employed to 
accomplish the prime objective of exploring temporal gene expression patterns. The Friedman test 
was given more emphasis due to the non-normality distributions of data. Repeated measures analysis 
of variance (ANOVA) and linear mixed models were also implemented to examine the potential of 
detecting differentially expressed genes despite non-normality. The Friedman test revealed significant 
differences in gene expression levels across different phases in dengue disease over time. This led to 
a notably higher count of genes showing differential expression compared to the other two methods: 
Repeated measures ANOVA and linear mixed models. The pathway analysis approach consists 
of significant differentially expressed genes derived from the Friedman test. The results identified 
upregulated pathways with any significant change in the overall expression of genes within pathways 
over time for the Febrile and Defervescence phases considering the Convalescent phase as a baseline. 
Moreover, genes available in pathways were not identified by the two parametric tests for non-normal 
data implying that the parametric approaches resulted in the least significance for data with non-normal 
distributions. 
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Introduction 

In biology, the basic unit of heredity is known 
as a gene. It can be viewed from different 
aspects of its inheritance, biological function, 

molecular structure etc. Being a vital part of 
the genome, protein-coding genes encode the 
information for making proteins. To determine 
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which proteins and in which quantities are 
present in a cell, control of these mechanisms is 
essential. Although a gene is significant in gene 
expression, it does not function in isolation. 
Suites of genes are involved in performing 
biological functions. The structure of different 
gene functions in different sequential steps of 
a specific biological process referred to as the 
genetic pathway (Hejblum et al., 2015). The 
cruciality of determining a particular set of 
molecular functions in a bioloical process is 
evolved with cellular differentiation through 
differential gene expression. Thus, molecular 
signatures of various diseases provide 
information on developing drug candidates.

This study involves in determining 
differentially expressed genes in dengue 
infection over time and it provides important 
clues to the underlying transcriptional control 
mechanisms and network structure of a 
biological cell which aids in understanding 
the biological differences between different 
stages in dengue disease progression. 
Following the identification of significant 
differentially expressed genes (DEGs), i.e., 
biomarkers associated with the development 
of dengue infection vary over time, this study 
aims to identify metabolic pathway functions 
that significantly vary over time. This allows 
to gain insights into the functional working 
mechanism of cells beyond the detection of 
differentially expressed genes and develop 
drug candidates that can either target or avoid 
specific pathways or networks to develop new 
drugs.

Moreover, it would be surprising if 
considerable departures from normality 
were not identified given the nature of the 
underlying biology. De Torrenté et al. (2020) 

shows that the expressions of less than 50% of 
all genes were normally distributed and other 
genes consist of different distributions such as 
gamma, bimodal, lognormal, etc. However, 
the normality assumption has not been 
checked strictly in gene expression studies. 
Patino & Ferreira (2018) states a few reasons 
for that. Mainly researchers are unaware of 
statistical assumptions, standard approaches 
used to check assumptions and remedies for 
that, and many parametric tests have been 
applied without knowledge of underlying 
distributions. However, the good practice is to 
assess the feasibility of the utilized statistical 
tests. Hence, the study discussed in this paper 
will address this issue by employing both 
parametric and non-parametric tests with 
respect to the normality. 

Objective of the study

On view of the above explanation based on 
past studies, the objectives of this study are 
(i) to identify differentially expressed genes in 
dengue infection over time and, functionally 
categorizing significant differentially 
expressed genes and (ii) to identify significant 
differences between parametric and non-
parametric tests with respect to the normality 
in analysing DEGs. 

Materials and Methods

Data description and preparation

The datasets required to accomplish the 
objective were acquired from publicly 
available microarray datasets in GEO 
database. Two keywords: “dengue expression” 
& “Homo sapiens” were used to search for 
gene expression studies related to dengue 
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disease in the GEO database. One hundred 
forty-five search terms appeared, and studies 
were selected from the database such that 
they follow the criteria: Studies with Homo 
sapiens which include the disease phase. 
Among them, two microarray gene expression 
datasets of whole blood or peripheral blood 
mononuclear cells (PBMCs): GSE28405, 
GSE43777 were chosen after thoroughly 
reviewing all the studies and datasets as 

other studies departed from the established 
criteria. In both studies blood samples were 
collected at three time points following 
the three stages of development of dengue: 
Febrile, Defervescence and Convalescent. 
Considering the available data, the prime 
focus was on Deoxyribonucleic acid (DNA) 
microarray rather than Ribonuclei acid (RNA) 
sequencing. Following table provides a 
summary on datasets used in this study.

Table 1.

A summary of the datasets.

Data Set Country Number of Microarray platform
Subjects Genes

Set 1 Singapore 31 23961 Illumina HumanRef-8 V1BeadChip
Set 2 Venezuela 18 54675 Affymetrix HG-U133 plus 2

The two datasets were normalized and analyzed 
independently as the two data sets derived from 
the two microarray platforms: Affymetrix and 
Illumina are different microarray technologies. 
Background correction, normalization and 
filtering were performed on both datasets using 
Bioconductor R packages (Silver et al., 2009). 
Quality control and pre-processing for dataset 
1 were performed using the “BeadArray” 
package. Bead-averaged data was normalized 
using a quantile normalization method 
using the “Lumi” package (Tolfvenstam et 
al., 2011). Quality control of raw data in 
dataset 2 was done using the Robust Multi-
chip Average (RMA) method in the ‘Affy’ 
package (Sun et al., 2013). Furthermore, 
gene signal normalization was done using 
housekeeping genes that do not respond to 
most treatments as references to compare to 
genes of interest (target genes) that do change. 
Glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH), β-actin and Hypoxanthine-

guanine phosphoribosyltransferase (HPRT) 
were chosen as reference genes as these 
three genes are the most stable genes for 
transcript normalizing in dengue infected 
studies (Kumar et al., 2018). After obtaining 
normalized gene expression values, the two 
datasets were checked for outliers separately 
by visualizing the intensity distributions 
of subjects of data. Then the filtering was 
applied to reduce the number of genes and 
increase the power to detect genes. Even with 
the multiple testing adjustment, it can result 
in low power since the number of hypothesis 
tests is still high in gene expression studies. 
Therefore, non-specific filtering method, i.e., 
filtering by variance was employed to further 
filter out genes.

Prior to any modelling, the normality was 
checked using the Shapiro-Wilk test on log 
transformed data. The results indicate that the 
dataset 2 satisfied the normality assumption for 
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majority of the genes while dataset 1 violated 
it for most of the genes. Both parametric & 
nonparametric tests were performed on two 
datasets separately to examine whether the 
results of both tests yielded a significant 
difference with respect to the normality.

Statistical tests 

The Friedman test is an appropriate 
nonparametric test to check the differences 
between disease conditions, when there are 
more than two groups with repeated measures 
(Siegel & Castellan-Jr., 1988). In this study, it 
was applied to each gene considering 3 phases: 
febrile, defervescence and convalescent and 
subjects as blocks. In this study, p-values were 
obtained and adjusted to correct multiple testing 
issue. Obtained p values were adjusted for the 
between gene comparisons using the q-value 
procedure.  For studies considering multiple 
genomes, a q-value as a false discovery rate 
(FDR) based measure was suggested because 
the FDR using The Benjamini-Hochberg 
procedure is too conservative for genomics 
applications (Storey & Tibshirani, 2003). This 
study used the following approach to obtain 
q-values using calculated p-values. If the 
q-value is less than 0.05, the null hypothesis 
that the groups coming from populations with 
the same median is rejected. Since, it does not 
reveal which phases differ for genes which 
can be found out using post hoc tests, the 
Wilcoxon-Nemenyi-McDonald-Thompson 
test (Pereira et al., 2015) was applied to 
compare the disease conditions: “Febrile”, 
“defervescence” and “convalescent” to detect 
significant differences. Considering each 
gene at a time the test has been implemented 
to determine significantly differentially 
expressed genes between two different phases. 

Obtained p values were adjusted for the 
between gene comparisons using the q-value 
procedure. If the q-value is less than 0.05, it is 
declared significant. 

Repeated measures ANOVA was performed to 
detect any overall differences between related 
means over time. In this study considering one 
gene at a time repeated measures ANOVA was 
performed to detect significant differences 
among “Febrile”, “defervescence” and 
“convalescent”. Then the p values obtained 
for calculated F statistics were adjusted 
using the q-value procedure to control the 
false discovery rate (FDR) due to multiple 
hypothesis testing (Storey & Tibshirani, 2003). 
If q values are less than the general threshold 
value of 0.05, then the null hypothesis that 
the related population means are not different 
was rejected and significantly differentially 
expressed genes among three conditions were 
identified. When significant differences were 
detected in the disease phases, a pairwise 
comparison of three phases was performed 
using a paired sample t-test to determine 
which pairs were significantly different 
for significant genes. Another parametric 
approach called the random intercept linear 
mixed model (Demidenko, 2013) was 
performed considering one gene at a time and 
the convalescent phase as the baseline. The 
most appropriate covariance structure with 
the smallest Akaike’s Information Criteria 
(AICC) value was selected for the data. If the 
adjusted p-value for the fixed effect, i.e., the 
disease phase considered in this study, is less 
than the general threshold value, the gene was 
considered significant over time.

Once significantly differentially expressed 
genes are detected over time, it aims to gather 
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knowledge about relevant groups of genes or 
pathways to identify the underlying biological 
processes and mechanisms. Those groups 
of genes that share a common biological 
function are defined based on prior biological 
knowledge, e.g., biochemical pathways 
or coexpression in previous experiments 
(Subramanian et al., 2005). In this study, 
pathways related to the detected differentially 
expressed genes were identified using the 
“Reactome” pathway database. Following the 
identification of functionally linked gene sets 
or pathways, gene sets are analysed as they 
are useful in summarizing biological trends. 
The gene set analysis is more powerful than 
the gene-by-gene analysis for several reasons. 
Even though none of the genes in the group 
exhibit very significant absolute fold changes, 
it can detect changes in their expression levels. 
Further, changing all the genes in a particular 
pathway might have a more significant 
biological impact than a considerable increase 
of a single gene (Hejblum et al., 2015). 

In the context of longitudinal microarray 
data, gene set analysis is burdensome as 
the dynamics of gene expressions within a 
gene set can be varied in a complicated way. 
Detecting such heterogeneity within a gene set 
has led to detect any change over time. Thus, 
the interest is focused on identifying any 
significant change in the overall expression 
of genes within gene sets i.e., pathways over 
time. Once pathways using the “Reactome” 
database are identified, considering a pathway 
at a time, gene expressions in each pathway 
were modelled using mixed models to 
examine any significant trend over time or 
heterogeneity between gene trends within the 
pathway. The trend is captured using linear 
polynomial functions. Then the significance 

of a pathway is determined by testing the 
significance of the time trend implying testing 
both random effects and fixed effects at once 
in a pathway. They are tested simultaneously 
using the likelihood ratio. If the computed 
p-value is less than 0.05, the null hypothesis 
that the genes within a pathway are stable over 
time is rejected. Since multiple gene sets are 
investigated at a time, Benjamini-Yekutieli 
correction procedure is used to adjust p values 
(Hejblum et al., 2015).

Results and Discussion

Univariate analysis 

For dataset 1 and 2, 5455 and 5548 significant 
DEGS over time were declared respectively 
from the Friedman test. Considering one gene 
at a time, p values were obtained and adjusted 
using the q-value procedure to correct for the 
multiple testing issue. Significant genes were 
selected using the threshold value of 0.05 
based on the q values. Since the Friedman test 
does not give information on which phases car-
ried out differences for the significant genes, 
the Wilcoxon-Nemenyi-McDonald-Thomp-
son test was applied. Considering one gene 
at a time, the test was applied to compare the 
rank sum of conditions of each comparison: 
“Febrile & Convalescent”, “Defervescence 
& Convalescent” and “Febrile & Deferves-
cence” to detect significant genes. The tables 
2-4 represents the number of significant genes 
for each comparison for dataset 1 and dataset 
2 separately. The three disease phases: febrile, 
defervescence, and convalescent are abbrevi-
ated as F, D, and  C respectively.
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Table 2.

Significant genes from the Wilcoxon-
Nemenyi-McDonald-Thompson test followed 
by the Friedman test.

Group Dataset 1 Dataset 2
F & C 1109 1540
D & C 2782 2511
F & D 2400 1149

6291 6200

Table 3.

Significant genes from repeated measures 
ANOVA followed by the paired sample t test.

Group Dataset 1 Dataset 2
F & C 794 1702
D & C 1918 2407
F & D 830 1454

3542 5563

Table 4.

Significant genes from linear mixed models.

Group Dataset 1 Dataset 2
F & C 1109 1540
D & C 2782 2511

3891 4051

Note that considering all the facts significant 
DEGs identified from the Friedman test 
followed by the Wilcoxon-Nemenyi-
McDonald-Thompson test were carried out 
into the pathway analysis as this test has not 
lost any information regarding significant 
genes.  Hence before moving to the pathway 
analysis, significantly DEGs derived from 
the Friedman test followed by the Wilcoxon-
Nemenyi-McDonald-Thompson test were 
reconsidered as shown below. Gene expression 
patterns in two groups: Febrile & Convalescent 
and Defervescence & Convalescent were 
explored by considering convalescent phase 
as the baseline since the interest is focused on 
identifying significant gene sets or pathways 
in the above-mentioned groups in the pathway 
analysis. Then DEGs were categorized into 
upregulated & downregulated genes by 
calculating log2 fold change which measures 
how much a quantity changes between the 
two phases for each gene. Here the threshold 
value of 1 or |𝑙𝑜𝑔2𝑓𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒| ≥ 1 was used. 
Summary results are shown in Table 5.

Table 5.

Upregulated & downregulated genes.

Group Dataset 1 Dataset 2
Upregulated Downregulated Upregulated Downregulated

F & C 420 432 214 92
D & C 255 1738 228 260

Pathway analysis 

In the pathway analysis, it is essential to note 
that the significant genes of most interest 

are the ones identified using the Friedman 
test followed by the Wilcoxon-Nemenyi-
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McDonald-Thompson test. That is due to 
the results of the parametric techniques for 
dataset 1 may be unstable due to violation of 
the normality assumption. As described in the 
univariate analysis, the significant DEGs for 
“Febrile & Convalescent” and “Defervescence 
& Convalescent” were explored further as 
upregulated and downregulated genes as they 
carried out into the pathway analysis. Detected 
significant upregulated and downregulated 
DEGs common to the two datasets are 
presented in table 6.

Table 6.

A summary of upregulated & downregulated 
genes.

Group Upregulated 
genes

Downregulated 
genes

F & C 144 41
D & C 130 109

Reactome pathways for those upregulated and 
downregulated genes for the two groups were 
obtained. According to the results obtained, 
more importantly, no downregulated pathways 
have been discovered for either of the groups. 
However, 27 and 26 upregulated pathways 
were identified for “Febrile & Convalescent” 
and “Defervescence & Convalescent” groups 
respectively. 

Time course gene set analysis

Tables 7 and 8 provide computed likelihood 
ratios, p values and adjusted p values for only 
the significant pathways over time.  It should 
be noted that the significance of pathways was 
checked for only dataset 2 as it satisfied the 
normality assumption while dataset 1 violated 
it. 

Table 7.

 Significant pathways for upregulated genes in “Febrile & Convalescent” group.

Reactome pathway Likelihood ratio p value Adjusted p value
Interferon Signaling 
(R-HSA-913531)

181.9051 P < 0.05 P < 0.05

Cytokine Signaling in Immune
system (R-HSA-1280215)

176.8954 P < 0.05 P < 0.05

Innate Immune System
(R-HSA-168249)

295.4940 P < 0.05 P < 0.05

Table 8.

Significant pathways for upregulated genes in “Defervescence & Convalescent” group.

Reactome pathway Likelihood ratio P value Adjusted p value
Interferon Signaling 
(R-HSA-913531)

315.9065 P < 0.05 P < 0.05
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Results in Table 7 indicate that only 3 pathways 
were declared significant over time among 27 
pathways for the “Febrile & Convalescent” 
group in dataset 2. Even though all p values 
were less than the threshold of 0.05, the 
adjusted p values using the Benjamini-
Yekutieli correction method was used to 
determine significance of the pathways. 
As depicted in Table 8, based on adjusted p 
values, only one gene set was identified as 
significant over time among 27 gene sets.

Comparison of parametric &
nonparametric test results 

Mainly three statistical models were 
implemented on the two datasets as explained 
in previous sections. The significant DEGs 
derived from those three methods vary for 
several reasons. Figure 1 and Figure 2 present 
comparisons between the implemented 
methods performed to detect those differences 
for the two datasets separately.  The three 
implemented techniques: Friedman test, 
Repeated Measures ANOVA & Linear Mixed 
models are abbreviated as ‘F’, ‘R’, & ‘L’ 
respectively in the Figures 1 and 2.

Figure 1.
Venn diagram of implemented models for 
dataset 1.

                                                                        

Figure 2.
Venn diagram of implemented models for 
dataset 2.

Out of 6029 genes 5455 and 5548 genes 
satisfy the Friedman test for dataset 1 and 
2 respectively. However, 3644 and 4167 
significant DEGs were identified using 
Repeated Measures ANOVA indicating that 
the number of significant DEGs have reduced 
by a large number in dataset 1 compared to 
the dataset 2. Which may be due to dataset 1 
not satisfying the normality assumption and 
parametric tests on skewed data resulting in 
fewer genes being significant. However, the 
results of Repeated Measures ANOVA do 
not deviate considerably from the results of 
Friedman test for dataset 2.  From the results 
obtained in the analysis, it was suggested that 
the Friedman test favored on dataset 1 while 
the linear mixed models favored on dataset 2. 

The significant DEGs derived from the 
Friedman test followed by the Wilcoxon-
Nemenyi-McDonald-Thompson test were 
used to obtain the gene pathways. However, 
it is noteworthy to investigate whether those 
genes in the pathways have become significant 
for other two implemented tests: Repeated 
Measures ANOVA and Linear Mixed Models. 
Failure in detecting those genes would indicate 
loss of important biomarkers if only parametric 
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approaches were considered. Surprisingly, 
all the genes derived from the Friedman test 
were also identified as DEGs by Repeated 
Measures ANOVA and Linear Mixed Models 
for dataset 2. However, for dataset 1, few of 
those genes were not identified as DEGs by 
the two parametric approaches. These facts 
established the importance of normality 
assumption as performing the parametric 
approaches on skewed data (dataset 1) resulted 
in losing significant DEGs. Moreover, it was 
seen that the parametric approaches did not 
fail to detect all the genes derived from the 
Friedman test for normally distributed data. 
However, it cannot be guaranteed that the 
significant DEGs derived from non-parametric 
approaches are always accurate as parametric 
tests are the most powerful approaches to 
detect differences for normally distributed 
data.

Conclusions

In conclusion, the analysis indicates that a 
considerable number of genes possess the ability 
to differentiate between the disease conditions 
“Defervescence” and “Convalescent.” The 
application of the Friedman test yielded a 
higher number of significant DEGs over time 
compared to the repeated measures ANOVA 
and linear mixed models for both datasets. 
Notably, the parametric approaches exhibited 
the least number of significant DEGs when 
applied to data with non-normal distributions. 
Therefore, the assumption of normality 
plays a crucial role in identifying significant 
DEGs over time. These findings emphasize 
the importance of selecting appropriate 
statistical methods and considering the 
underlying distribution characteristics 
when analyzing gene expression data in 

relation to disease conditions. Considering 
pathway analysis, Twenty-seven and twenty-
six upregulated pathways were identified 
for the significant DEGs derived from the 
Friedman test for “Febrile & Convalescent” 
and “Defervescence & Convalescent” groups 
respectively and no downregulated pathways 
have been discovered for either of the groups. 
Among them, three upregulated pathways: 
Interferon Signaling (R-HSA-913531), 
Cytokine Signaling in Immune system 
(R-HSA-1280215), Innate Immune 
System (R-HSA-168249) for “Febrile & 
Convalescent” and one upregulated pathway: 
Interferon Signaling (R-HSA-913531) for 
“Defervescence & Convalescent” group had 
significant change in the overall expression of 
genes within pathways over time.
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