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Abstract

This study aims to enhance the accuracy of CO, level
forecasts, compare the efficacy of different predictive
models, and provide insights for policy development.
Employing time series and regression analysis
techniques, the study uses historical data from
global monitoring stations (1979- 2022) to model
the annual mean concentration of atmospheric CO,
The results reveal that the ARIMA (1,1,1) model
outperforms the simple linear regression model in
predictive accuracy. Nevertheless, the regression
model came across a technical problem as residuals
are significantly autocorrelated. @ The Augmented
Dickey-Fuller test was applied to ensure stationarity
of the first difference of the original series. The
model was trained using data from 1979 to 2022 and
validated for 2023. The errors of the ARIMA(1,1,1)
was found to be white noise. The ARIMA model
projected CO, concentrations of 419.5, 421.8 and
424.2 for the years 2023, 2024, and 2025 respectively,
with a percentage error of just 0.048% for the 2023.
In contrast, the corresponding percentage of error
for the simple linear regression model was -1.236%.
These findings underscore the ARIMA model’s
superior performance in forecasting future CO; levels
and its suitability for environmental monitoring and
climate change mitigation strategies. This research
provides a valuable methodological framework for
future atmospheric science studies and informs
policy decisions aimed at addressing rising CO,
concentrations.

Keywords: ARIMA; CO,; Forecasting; Regression;
Time series

https://doi.org/10.54389/NCI1X3883

Introduction

Each year, human activities release more carbon
dioxide (CO,) into the atmosphere than natural
processes can remove, causing a continuous increase
in atmospheric CO, levels (Schwartz, 2018). In 2023,
the global average CO, concentration reached a
record high of 419.3 parts per million (ppm), marking
a 50% increase since the pre-Industrial Revolution
era (Lindsey,R. 2024). This dramatic rise is largely due
to the burning of fossil fuels like coal and oil, which
release carbon that plants sequestered over millions
of years (Estes, 2023). It further highlighted that
over the past 60 years, the annual rate of increase
in atmospheric CO, has been about 100 times faster
than natural increases observed at the end of the
last ice age, 11,000-17,000 years ago (NOAA Global
Monitoring Laboratory, n.d.).

The ocean absorbs a significant portion of this CO,,
leading to a drop in pH by 0.1 units, a 30% increase in
acidity. Despite the natural “sinks” on land and in the
ocean that absorb about half of the CO, emissions,
they cannot keep up with the volume of emissions,
causing the total atmospheric CO, to rise annually.
CO, is Earth’s most crucial greenhouse gas, absorbing
and radiating heat. Without it,

greenhouse effect would be too weak to maintain a

Earth’s natural

global average surface temperature above freezing.
The additional CO, is amplifying this effect, leading
to global temperature increases. In 2021, CO, was
responsible for about two-thirds of the total heating

effect from all human-produced greenhouse gases.
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Furthermore, CO, dissolves into the ocean, forming
carbonic acid and lowering the ocean’s pH, a process

known as ocean acidification.

In the recent past, annual CO, emissions at
the international level were examined from various
perspectives by many authors (IPCC, 2023; Vollmer &
Eberhardt, 2024). Those models are either complex,
oraccuracy was very low. In this paper, a simple model
is developed to predict annual CO, concentrations

with high accuracy.
Materials and Methodology
Secondary data

The data utilized in this research originate from the
US Government’s Earth System Research Laboratory,
Global
consist of annual CO, concentrations in parts per
million (ppm) from 1979 to 2023 (NOAA Global
Monitoring Laboratory, n.d.). Data was analysed
The study

employed ARIMA models in EViews software and a

Monitoring Division, and these datasets

using Minitab and EViews software.

simple linear regression model in Minitab software.
Methodology

A regression model determines the relationship
between a dependent variable and independent
variables. In this research, linear regression uses the
equation Y = Bo + B1X+ € where Y is the dependent
variable, X is the independent variable, g is the
intercept, 51 is the slope and € is the error term
(James, Hastie, & Tibshirani,2013).

The ARIMA model is used for time series forecasting.
It combines Autoregression (AR), Differencing (l) to
achieve stationarity, and a Moving Average (MA).
ARIMA models are denoted as ARIMA (p,d,q),
where p is the number of lags, d is the degree of
differencing, and q is the order of the moving average
(Box, Jenkins, Reinsel, & Ljung, 2015).

Results and Discussion
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Figure 01. Descriptive Statistics of Annual Average

CO, Concentration

The annual average CO, concentration data ranges
from a minimum of 336.85 ppm to a maximum
of 417.07 ppm, with a median value of 369.765
ppm, indicating that half of the years have CO,
concentrations below this level. The mean annual
average CO, concentration is 372.7536 ppm, with
a standard deviation of 23.7346 ppm, showing
moderate variability around the mean. The dataset
exhibits slight positive skewness, with a skewness
value of 0.2619, and the non-significance of Jarque-
Bera test (p = 0.2497) suggests that the data does not
significantly deviate from a normality. These statistics
highlight an overall upward trend in CO, levels over
the vyears, with occasional higher concentration

outliers.

Fitting a linear regression model

Time series polt of Annual mean CO2 concentration

w79 986 193 2000 2007 20U 2021
Year

Figure 02 . Annual Average CO, Concentration 1979-
2022
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Figure 02 clearly shows a simple linear relationship
between average CO, concentration (y) and time(t).
This further justified by the highly significant
correlation between time and CO, (r =.995, p < 0.05).
Based on the regression analysis, the fitted model is
y =-3305.121 + 1.838*t (R? = 99%). Thus, it can be
concluded with 95% confidence that the fitted model
explains 99% of the observed variability of average
CO,. The percentage errors for the training set
(1979 to 2022) vary between -6.27% and 2.56. The
percentage error for 2023 is -1.24% (Table 01).

Table O01.

Regression Model

Forecasted Values Using the Fitted

Predicted Actual Percentage
Year value value orror e
2023 414.119 419.3 -1.236
2024 415.958 - -
2025 417.796 - -

However, Durbin-Watson statistic of 0.656 suggests
that errors are not random confirming the fitted
regression model is statistical not valid and slight
positive autocorrelation in the residuals. Thus, it is
necessary to find an alternative approach and we
developed the ARIMA model as described below.

Fitting a Time Series Model
Model Selection

The Augmented Dickey-Fuller (ADF) test was applied
to the data and value was 4.9760 yielding a p-value
of 1, which is greater than the 0.05 significance level.
This result indicates that we cannot reject the null
hypothesis that the series has a unit root, confirming
that the CO, concentration data is non-stationary.
This implies that the time series has a unit root, and
its mean and variance are not constant over time,
necessitating an appropriate differencing method for

accurate time series modelling and analysis.

Due to the non-stationarity of the original series,
we consider the first difference series. The ADF test
showed a value of -3.945 and shows that the first

Table 02.

Sample (adjusted): 1980 2022
Included observations: 43 after adjustments

Autocorrelation Partial Correlation AC PAC Q-Stat Prob
T | | . 1 0424 0424 82712 0.004

1 I 2 0255 0092 11.345 0.003

T | [ | 3 0.399 0.322 19.062 0.000
1 o 4 0265 -0.007 22.558 0.000

1 I 5 0204 0.057 24.668 0.000
p o 6 0.060 -0.202 24.859 0.000
1 =] 7 0210 0.233 27.227 0.000

1 I 8 0272 0092 31.324 0.000
oo T 9 0.125 0.039 32212 0.000
=] = 10 0243 0.119 35679 0.000
oma I = 11 0.141 -0.153 36.876 0.000
o g 12 0.046 -0.091 37.007 0.000
According to the correlogram analysis of the
first difference series of the annual average

CO, concentration data from 1979 to 2022, the
Autocorrelation Function (ACF) indicates that the
1st and 3rd lags are significant, while the others are
not significant. Similarly, the Partial Autocorrelation
Function (PACF) also shows significance at the 1
and 3" lags, with other lags not showing significant
correlations. These findings suggest that there are
significant autocorrelations at these specific lags in
the first difference series, which play a key role in
identifying MA and AR components in time series
modelling. Thus, the three parsimonious models
(Table 02) were considered.

Model Identification

Table 02. A Comparison of Different Statistics Among the
Identified Three Models
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Among those possible models (Table 04), There
are 3 models with all significant parameters, those
being ARIMA (1,1,0), ARIMA (0,1,1), ARIMA (1,1,1).
The lowest values of AIC, SBIC, and HQIC, and the
maximum log likelihood can be identified from the
model ARIMA (1,1,1). Thus, the ARIMA (1,1,1) is the
best fitted model. The equation of the best fitted
model can be written as,

(1- B)Y: = £,(1+ 0.34B+ 0.24 B2). (3)

Date: 06/24/24 Time: 23:09
Sample (adijusted): 1980 2022
Q-statistic probabilities adiusted for 2 ARMA terms

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

1 0.075 0.075
-0.152 -0.158
0.144 0.174
-0.016 -0.076
-0.059 0.003
-0.270 -0.324
0.058 0.161
0.184 0.063
-0.042 0.079
0.223 0.227
11 0.090 -0.025
12 -0.028 -0.018

0.2609
1.3454
2.3432
2.3553
2.5346
6.3420
6.5208
8.3840
8.4859
11.401
11.889
11.937

0.126
0.308
0.469
0.175
0.259
0.211
0.292
0.180
0.220
0.289
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-
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Figure 03. ACF and PACF of the Residuals of the Best
Fitted Model

Based on Figure 04, the Q statistic for the residuals’
probabilities was not statistically significant (p > 0.05).
This means there is 95% confidence that the errors
are random and uniformly distributed. Additionally,
the scatter plot between the predicted values and the
residuals showed no systematic pattern, indicating
that the residuals have a constant variance.

Dependent Variable: D(MEAN)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 06/24/24 Time: 23:08

Sample: 1980 2022

Included observations: 43

Converaence achieved after 37 iterations

Coefficient covariance computed usina outer product of aradients

Variable Coefficient Std. Error t-Statistic Prob.

C 1.893611 0.347431 5.450324 0.0000

AR(1) 0.934621 0.130865 7.141872 0.0000

MA(1) -0.720619 0.252565  -2.853200 0.0069

SIGMASQ 0.239662 0.050506 4.745256 0.0000

R-sauared 0.247461 Mean dependent var 1.865581

Adijusted R-squared 0.189573 S.D. dependent var 0.571011

S.E. of rearession 0.514045  Akaike info criterion 1.608455

Sum squared resid 10.30547 Schwarz criterion 1.772288

Log likelihood -30.58178 Hannan-Quinn criter. 1.668871

F-statistic 4274848 Durbin-Watson stat 1.840243

Prob(F-statistic) 0.010569

Inverted AR Roots .93
Inverted MA Roots 72

Figure 04. Residual Plot of the Best Possible Model

16

Series: Residuals
Sample 1980 2022
Observations 43

14

Mean 0.030924
Median 0.092848
Maximum 1315791
6 Minimum -0.947882
Std. Dev. 0.494357
Skewness 0.326822
3.412286

4
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Figure 05. Residual Plot of the Best Possible

Kurtosis

1070039
0.585658

Jarque-Bera
Probability

Since p-value (p = 0.586) is greater than 0.05, we
can accept HO at 5% level of significance. Therefore,
it can be concluded that errors are not significantly

deviated from normality.

_'Heteroskedasticity Test: ARCH

] 19
F-statistic 0.789944  Prob. F(12,17) 0.6555
Obs*R-squared 10.73969 Prob. Chi-Square(12) 0.5513

Since the p value (0.2094) of heteroskedasticity test
is greater than 0.05, it can be concluded with 95%
confidence that there is no ARCH effect. Therefore,
it can be confirmed that the variance of the errors is
Homogeneous. Hence, it can be concluded that the
residuals of the model are white noise.

420 —
Forecast: MEANF

Actual: MEAN

Forecast sample: 1979 2022

Adjusted sample: 1981 2022

Included observations: 42

Root Mean Squared Error ~ 0.497954
Mean Absolute Error 0.375367
Mean Abs. Percent Error  0.101765
Theil Inequality Coef. 0.000664
0.002829
0.081504
0.915667
0.257468
0.101773
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Figure 06. Actual and Forecasted Average CO,
Concentration

The time series forecast demonstrates a strong
alignment between the predicted and actual
observed values of annual average CO, concentration
from 1979 to 2022. The narrow confidence intervals
indicate a high level of certainty in the predictions.
Performance metrics support the model’s accuracy,
with a low Root Mean Squared Error (0.4980) and

Mean Absolute Error (0.3754) reflecting minor
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discrepancies. The Mean Absolute Percent Error
(0.1018) suggests moderate accuracy. The high
(0.9157)
(0.00283) and variance (0.0815) proportions suggest

covariance proportion and low bias
that most errors are unsystematic. Overall, the model
is reliable and provides accurate forecasts of CO,

concentrations (Nagendrakumar et al., 2021).

Table 03. Forecast of 2023, 2024 and 2025

Y Forecast Actual Percentage
ear

value value error (%)
2023 419.5 419.3 0.048
2024 421.8 - -
2025 424.2 - -

The last step is to predict the future values using
the ARIMA (1,1,1) model. Using the AR and MA
components, the CO, concentration for 2023, 2024
and 2025 was forecasted as in the table. The small
difference and percentage error (0.048%) for 2023
suggest that the ARIMA model used for forecasting
is accurate for this time series data. The percentage
errors for the training set (1979 to 2022) vary
between -2.415% and -0.224%. Overall, the model
showed an increasing trend in future values with
respect to 2022.

Conclusion

In conclusion, our study aimed to model and predict
CO, concentrations over time using two statistical
approaches: a linear regression model and an ARIMA
(1,1,1) time series model. The linear regression model
showed a strong linear relationship with an R-squared
value of 99%, indicating a good fit with historical
data. However, its assumption of a strictly linear
relationship limits its accuracy for future predictions,
as it does not account for potential changes in trends

over time and the percentage error is higher.

To address these limitations, we used an ARIMA
(1,1,1) model, which better captures the underlying
patterns and fluctuations in CO, concentrations. This
model includes autoregressive and moving average

components, and differencing to ensure stationarity,

making it more robust for future predictions by

considering temporal dependencies and trends.

In summary, while the linear regression model
is effective for explaining past data, the ARIMA
(1,1,1) model provides a more reliable method for
forecasting future CO, concentrations. This highlights
the importance of selecting appropriate modelling
techniques based on the analysis purpose, with time
series models like ARIMA being better suited for

future predictions.
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