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This paper presents some signifi cant theorems and 
corollaries prevailed, involving the cevian triangles, 
in parti cular, on right cevian triangles. Some useful 
corollaries are presented including a main theorem on 
right cevian triangles with detailed proofs, involving 
the rati os generated by the end points of internal 
cevians drawn to the side lengths of a triangle, 
adducing more generalized formulas for the diff erent 
cevians of triangles around the right cevian triangle 
to fulfi l the existi ng signifi cant research gap in cevian 
geometry, parti cularly on cevian triangles. This paper 
presents pure geometric proofs for the theorems and 
corollaries, without using trigonometry, coordinate 
geometry, complex numbers, vectors or any other 
non-geometric approaches.

Keywords: Cevian; Cevian Triangles; Mathemati cal 
Logic; Inequaliti es; Cubic Equati ons     

Introducti on

The geometry developed by Giovanni Ceva who was 
an Italian eminent Mathemati cian, on the cevians 
of triangles, is usually called Cevian Geometry. A 
cevian can be split to two categories, namely, internal 
cevian, and the external cevian, from which the most 
prominent Mathemati cal Theorems, Lemmas and 
Corollaries were proved. He has published famous 
theorems, including one known as Ceva’s Theorem 
on concurrent cevians of a triangle. A cevian is a line 
segment that extends from one vertex of a triangle to 
the opposite side; this can be internal (internal cevian) 
if the cevian’s end point is within the opposite side, or 

can be external (external cevian), if the cevian’s end 
point is on the opposite extended side length of the 
triangle. (Hajja, 2006; Amarasinghe, 2011) The length 

 in Figure 1 is an example for a cevian (internal 
cevian). The triangle generated by the end points of 
the three concurrent cevians of a triangle, is called 
a cevian triangle. In this paper, the author explores 
on the geometry of cevian triangles; in parti cular, the 
right-cevian triangles.

The author himself has published a new theorem 
on an arbitrary right-cevian triangle (Amarasinghe, 
2011) using purely Euclidean Geometry (without 
using trigonometry, vector algebra, complex 
numbers or any other techniques), nevertheless the 
theorem was published based on a more problem-
solving approach rather than an explicit research 
approach due to the readability of the relevant 
journal. In this paper, the author revamps the 
right-cevian triangle theorem and its proof within a 
more research-focused environment, consequently 
deriving a signifi cant number of useful theorems 
and corollaries on right-cevian triangles, along with 
the proofs of their converses and logically equivalent 
corollaries, including some inequaliti es. Moreover, 
some important corollaries which involve a cevian, 
but may not include the cevian triangles, are also  
presented.
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Main Results

Lemma 1

Let  be an arbitrary plane triangle such 

that  be an arbitrary point on (an internal 

point), with ,  and . For each 

constant , If  is a cevian such that 

, then the length of the cevian  is given by

.

(Amarasinghe, 2010a; Amarasinghe, 2010b; 
Amarasinghe, 2011)

 Figure 1.  A Euclidean Triangle

Remark 1. Observe that the same formula for the 

cevian  can be proved, if is an obtuse  

triangle or is a right triangle, and if is 

perpendicular to (Amarasinghe, 2023).

Theorem 1 

Let be a Euclidean plane triangle such that 

the internal arbitrary cevians ,  and  are 

concurrent at the cevian center . If is a 

right-triangle, such that  is a right-angle, then 

 and are the internal angle bisectors of the 

angles  and  respecti vely.    

(Amarasinghe, 2011)

                                           

     

Proof (Theorem 1)

Since are arbitrary points (as menti oned in 

the above fi gure), let ,  and  

for arbitrary positi ve constants . Let , 

and .

Since ,   and  are concurrent at the cevian 

center , by using the Ceva’s Theorem, it follows 

that . Thus, . (Karapetoff , 1929; 
Amarasinghe, 2011).

Using lemma 1 for the cevian  in , we 

obtain .

Using lemma 1 for the cevian  in , we 

obtain .

Since , it follows that 

Figure 2. A triangle with an inscribed Right-cevian 
triangle 
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.

Further simplifi cati on leads us to

.

Remark 2. Observe that the lengths of the cevians 

and obtained above are independent of the 

concurrence of three cevians , and .

Using lemma 1 for the cevian  in , we 

yield .

Since  and ,  it follows that 

. Further simplifi cati on leads us to

. 

Observe that using lemma 1 for the cevian  in

, we yield .

Using lemma 1 for the cevian  in

, we yield 

. Since  and ,  it follows that 

. Further simplifi cati on leads us to

.

Now assume that is a right triangle. 
Then by using the Pythagoras Theorem, we 

obtain . Hence it follows 

that

. 

A careful simplifi cati on gradually leads us to

. Since

, it follows that . Since

, it follows that 

Thus  does exist such that .

Now observe that 

. 
Hence by the converse of angle bisector theorem, it 

follows that is the internal angle bisector of the 

angle .

Also observe that 
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Observe that since ,  

does exist such that  (Amarasinghe, 2012).

Hence by the converse of angle bisector theorem, it 

follows that is the internal angle bisector of the 

angle . This completes the proof of Theorem 1.

Converse of Theorem 1

Let be a Euclidean plane triangle such that 

the internal arbitrary cevians ,  and  are 

concurrent at the cevian centre . If  and 

are the internal angle bisectors of the angles  

and  respecti vely, then is a right-triangle 

such that  is a right-angle.

Proof. (Converse of Theorem 1)

Assume that  and are the internal angle 

bisectors of the angles  and  respecti vely. 

Then  and . Since  

 , it easily 
follows that 

 Thus  Hence 

is a right-triangle such that  is right-
angle.

Theorem 2 (Logically Equivalent to Theorem 1)

Let be a Euclidean plane triangle  such that 

the internal arbitrary cevians ,  and  are 

concurrent at the cevian centre . If at least one 

of the lengths  and are not internal angle 

bisectors of angles  and  respecti vely, then 

the cevian triangle  is not a right triangle such 

that  is a right-angle. 

Proof. The proof is trivial. Use the contrapositi ve of 
the conditi onal statement involved in Theorem 1.

Theorem 3

Let be a Euclidean plane triangle be such that 

is an arbitrary internal cevian , and and  

are arbitrary points on  and respecti vely. If

 and are the internal angle bisectors of the 

angles  and  respecti vely, then is a 

right-triangle such that  is a right-angle, and the 

cevians ,  and  are concurrent at a point 
.

Proof. Assume that  and are the internal 

angle bisectors of the angles  and  
respecti vely. Then from the converse of the Theorem 

1, it easily follows that is a right-triangle 

such that  is right-angle. Observe that by 
using the angle bisector Theorem, it follows that  

 and . Observe that that 

. Hence by the 
converse of the Ceva’s Theorem, it follows that the 

cevians ,  and  are concurrent at a point 

. 

Corollary 1. (Under Theorem 1)

Let be a Euclidean plane triangle be such 

that the internal arbitrary cevians ,  and  

are concurrent at the cevian center . If  

is  a right-triangle such that  is a right-angle and 

, then the is also a right 
triangle.
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Proof. (Corollary 1)

Assume that is a right-triangle such that  

is a right-angle and . Then as in fi gure 

2,  . Ceva’s Theorem 

leads us to . Thus . Since , . 

Thus . Thus, it follows that and 

are mid points of and . By using the mid-
point Theorem in Euclidean Geometry, it follows that 

is parallel with , and is parallel with . 

Hence, is a parallelogram. Thus,E  

. Since  is a right-angle, . 

Hence, is a right triangle.

Corollary 2 (Under the Theorem 1)

Let be a Euclidean plane triangle such that 

the internal arbitrary cevians ,  and  

are concurrent at the cevian center . If is 

a right-triangle such that  is a right-angle, then 

.

Proof. (Corollary 2)

Assume that is a right-triangle such that 

 is right-angle. Then by Theorem 1, we have 

 and are the internal angle bisectors of 

the angles  and  respecti vely. Thus, by a 
well-known corollary related to the lengths of angle 

bisectors, we yield 

and . Since 

is a right-triangle, it follows that 

. That is, we have led to the required result

 (Amarasinghe, 

2011, Amarasinghe 2012).

Corollary 3 (Under Corollary 2)

Let be an Euclidean plane triangle  such 

that the internal arbitrary cevians ,  and 

 are concurrent at the cevian center 

. If is a right-triangle such that  is 

a right-angle with , then 

.

Proof. (Corollary 3)

Assume that is a right-triangle 

such that  is a right-angle with 

. Then by corollary 2, we 

obtain . Thus, 

Hence, it follows 

that .

Corollary 4 (An Inequality)

Let be  a Euclidean plane tr iangle such that 

the internal arbitrary cevians ,  and  are 

concurrent at the cevian center . If is a 

right-triangle, such that  is a right-angle, then 

.

Proof. (Corollary 4)

Assume that is a right-triangle such 

that  is right-angle. Then by corollary 2, 

we obtain 

. Observe that . Also, observe that 

using the triangle inequality for  and 

triangles, we yield  and 

respecti vel y. Adding them together 

leads to . Hence,
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. Hence, it follows that 

. Thus, it follows that 

.

Extended Corollary 4 (An Inequality)

Let , and be the hypotenuses of the 
three arbitrary right-cevian triangles constructed 

with  their right-angle vertexes located on , 

and respecti vely. 

Then .

Proof. (Extended Corollary 4)

By corollary 4, it follows that . 

Hence, we can deduce that  and 

. 

Thus, it follows that

Now it is interesti ng to analyze the case of the 

geometry around the right cevian triangle , 

if the main triangle is an equilateral triangle.

Corollary 5 (under Theorem 1)

Let be an equilateral Euclidean plane triangle 

be such that the internal arbitrary cevians ,

 and  are concurrent at the cevian center 

 and and . If  is a right-

cevian triangle such that  is a right-angle, then 

.

   

                                  

Figure 3. An equilateral triangle with an inscribed 
right-cevian triangle

Proof. (Corollary 5)

Proof is trivial due to the proof of Theorem 

1.  Assume that is a right-cevian 

triangle such that  is right-angle. The 
by the proof of theorem 1, it follows that 

. 
This completes the proof.

Observe that the following important remarks can be 
established under the corollary 5.

Remark 3 Then it also trivially follows that since 

 implies that is only dependent on  
and not dependent of the side lengths of the main 

triangle .

Remark 4. Observe that the converse of the corollary 
5 trivially holds from the converse of the Theorem 
1. (Since the converse holds for an arbitrary triangle 

)

a
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Remark 5 Rearranging the terms in corollary 5, 

reduces to . Since the discriminant 
of this quadrati c is non-negati ve, it follows that 

. Since , it follows that . 

Thus . Also, it is not diffi  cult to prove that 

the maximum value of is .

Now it is interesti ng to analyse what happens, if 

 and  is not a cevian triangle, 

also given that is equilateral. The following 
corollary reveals about it. Please recall that now we 
assume that the only cevian of the main triangle 

is .

Corollary 6.

Let be an equilateral Euclidean plane triangle 

such that is an internal cevian. Let  be a point 

on such that is a cevian of , and let 

and . If   and is the 

internal angle bisector of the angle , then is 

a median of the equilateral triangle .

Proof. (Co rollary 6) 

Assume that  and is the 

internal angle bisector of the angle 
. Observe that by the angle bisector theorem, 

it follows that . Then it follows that

. Since 

is an equilateral triangle, it follows that 

. 

That is . This leads us to 

. Thus or . Since , it follows that 

. That is is the mid-point of . Thus is a 

median of . This completes the proof of 
corollary 6. 

Remark 6 According to the conclusion of the 

corollary 6, since is an equilateral triangle, 

 trivially becomes a perpendicular drawn to 

and also .

The following corollary is immediately followed by 
corollary 6.

Corollary 7 (Logically equivalent to corollary 6)

Let be an equilateral Euclidean plane triangle 

be such that is an internal cevian. Let  be a 

point on such that is a cevian of , and 

let and . 

If  is not a median of the equilateral triangle 

, then or is not the internal 

angle bisector of the angle .

Proof. (Corollary 7)

The proof is trivially followed by the contrapositi ve 
of the conditi onal statement of corollary 6.

Corollary 8 (An inequality)

Let be an equilateral Euclidean plane 
triangle be such that the internal arbitrary cevians 

AE
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 and  are concurrent at the cevian 

center . If  is a right-triangle such that 

 is a right-angle, and  , then 

and  and are fi xed 

points of the equal side lengths , and 
respecti vely.

Proof. (Corollary 8) Assume that is a 

right-triangle such that  is a right-angle, and  

. Then by corollary 5, it follows 

that . Thus 

. Thus,   Since , 

. Put . Observe that it 

is not diffi  cult to prove that  is conti nuous 

on  by using the 
defi niti on of conti nuity on an interval. Observe 

that , and 

. Thus, by th e 
Intermediate value theorem, there exists a real root 

 such that . 

By using Cardona’s method of solving cubic 

equati ons of the standard form 
, the standard discriminant of the cubic is given by

. If the 

cubic is depressed of the form  then 
it is trivial to see that the discriminant reduces to 

. Observe that since , it 

follows . Hence it follows that the cubic 
has exactly one real root and two complex roots. 

That is has only one real root 
. (Note that we can exactly calculate the exact real 
root by proceeding the Cardona’s method). That is 

. Since the equati on has a fi xed 

real root, it follows that both  are fi xed. Thus, the 

points  are fi xed points of the equal side lengths 

 and respecti vely. Since (see the 
proof of theorem 1), it follows that is also a fi xed 

point on . This completes the proof of Corollary 
8.

Conclusions

The readers are invited to fi gure out the fact that 
whenever the cevians are concurrent at a point 
(cevian center), the rati os generated by the end 
points of cevians on the side lengths of a triangle, 
conform a mutual correlati on. In parti cular, no 

matt er what the main triangle, we choose ( ), 
no matt er what the right-cevian triangle is generated 

inside the , it follows that the side lengths 

and become the internal angle bisectors of 

the angles  and  respecti vely from which 
it follows the length of the hypotenuse of the right-

cevian triangle , and thereby led to a useful 

inequality in terms of the side lengths of
. Observe that it is intricate to intuiti vely deduce or 
speculate (even if a graphical approach is used) that 

and become the internal angle bisectors 

of the angles  and  respecti vely as soon 
as we depict the right-cevian triangle in a fi gure at 
the fi rst glance, and only the proof can convey it. 
Moreover, the converse of the Theorem is proved, 
and a useful corollary which is almost equivalent to 
the converse of the theorem, is also presented and 
the contrapositi ve of a conditi onal statement is used 
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several ti mes to prove some new corollaries which are 
signifi cant, with ease. The corollary 6 only includes a 
cevian, but not a cevian triangle, but eventually led 
to a result which is more interesti ng. Such proofs 
convey the idea that Pure Mathemati cs is magical 
and gorgeous. Eventually, the subsidy of solving the 
cubic equati ons using the Cardona method, and the 
Intermediate value theorem in real analysis, played a 
major role in proving the corollary 8, showcasing the 
fact that Advanced Euclidean Geometry oft en needs 
the subsidy of other branches of Pure Mathemati cs 
to successfully prove signifi cant theorems and 
corollaries.
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