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ABSTRACT  

This research, dedicated to developing an accurate and efficient pneumonia detection system 

from Chest X-Ray images, highlights the significance of automated tools in enhancing healthcare 

diagnostics. Its significance lies in the fact that pneumonia is a prevalent respiratory condition that 

requires timely and accurate diagnosis for effective medical intervention. The project's objective was to 

make use of convolutional neural networks and image analyses to create an automated diagnostic tool 

that could assist healthcare professionals in identifying pneumonia with precision and efficiency. To 

achieve this, the system initially made use of two custom deep learning architectures but ultimately used 

a pretrained CheXNet-based model, developed by using transfer learning. This choice was made by 

considering CheXNet’s proven performance in identifying pneumonia and other pulmonary conditions. 

The project's results proved promising, with the CheXNet-based model achieving high diagnostic 

accuracy and providing valuable insights into the presence of pneumonia. The system's architecture, 

using deep learning and the use of DICOM images, demonstrated its effectiveness in improving the 

accuracy and efficiency of pneumonia diagnosis. Based on the results, this paper further demonstrates 

a web-based application for interaction with the system. Additionally, it provides information on the 

work that could be done in the future. Thus, this research contributes to the growing field of medical 

image analysis and highlights the significance of automated tools in enhancing healthcare diagnostics. 

The project's outcomes are meant to pave the way for more efficient and accessible methods for 

pneumonia detection, ultimately benefiting both healthcare providers and patients. 

KEYWORDS: Pneumonia, Chest X-rays, Diagnostic Support System, Machine Learning, 

CheXNet, DICOM. 

1. INTRODUCTION 

Pneumonia is a global health concern, associated with high mortality rates, making swift and 

accurate diagnosis crucial. Current diagnostic methods include physical examinations, chest X-rays, 

blood tests, and more. While some offer high accuracy, accessibility, and cost-effectiveness, others 

provide greater precision but are costly and less accessible. Variability in result turnaround times further 

complicates the diagnostic landscape. Traditional approaches are insufficient in meeting the growing 

demand for precise and rapid diagnoses as pneumonia cases increase in complexity. 

To address this challenge, an automated diagnostic model is needed to complement existing 

methods. Chest X-rays, being a widely used and practical diagnostic tool, present an ideal avenue for 

integration. However, interpreting chest X-rays for disease identification can be challenging, leading to 

errors and discrepancies among medical professionals. Automated models promise to enhance 

accuracy, streamline diagnostics, and reduce interpretation inconsistencies, revolutionizing pneumonia 

diagnosis. 

 While several medical diagnosis models, including chest X-ray diagnostic models, are in 

development, they face several challenges. Limited training data, data bias, high computational 

requirements, and limited scalability hinder their effectiveness. These models employ different 

strategies in preprocessing, dataset composition, architecture design, and optimization techniques. 

Overcoming these limitations requires a thorough evaluation of current methods, the identification of 

the most effective techniques, and the integration of existing model strengths with innovative 
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approaches. The goal is to create a diagnostic model that excels in accuracy, reliability, and adaptability, 

addressing the pressing need for precise pneumonia diagnosis in an evolving healthcare landscape. 

2. RELATED WORK 

The diagnosis of pneumonia has evolved significantly in recent years, transitioning from 

traditional medical methods to highly automated approaches driven by machine learning and deep 

learning techniques. This literature review explores these advancements, emphasizing the critical role 

of automation in pneumonia diagnosis. 

2.1  Traditional Medical Methods 

Traditional methods of diagnosing pneumonia were primarily reliant on clinical symptoms and 

manual interpretation of chest X-rays by radiologists. These methods had limitations in terms of 

accuracy and efficiency, often leading to delayed diagnoses. 

Historically, chest X-ray imaging played a pivotal role in identifying pulmonary abnormalities. 

Early attempts at applying machine learning to chest X-ray analysis for pneumonia detection were 

essential in highlighting the potential of automation in enhancing accuracy and efficiency. Meng et al. 

reviewed the role of machine learning in pneumonia diagnosis, acknowledging the need for more 

advanced approaches to improve accuracy and speed (Meng et al., 2021). Simonyan and Zisserman 

demonstrated the initial steps taken in utilizing machine learning for pneumonia diagnosis, showcasing 

the potential of automated methods in enhancing traditional chest X-ray interpretations(Simonyan & 

Zisserman, 2015) . 

2.2 Automated Methods: A Spectrum of Advancements 

The progression of automated methods in pneumonia diagnosis can be divided into several key 

categories, reflecting the diversity and progression within the field. 

 

2.2.1 Computer-Aided Diagnosis (CAD) 

The introduction of Computer-Aided Diagnosis (CAD) systems marked the initial movement into 

automation in pneumonia diagnosis. These systems aimed to enhance the efficiency of radiologists by 

providing them with automated tools for detecting pneumonia-related abnormalities. Computer vision 

techniques were central to CAD systems. 

Computer-aided diagnosis (CAD) systems have become a fundamental part of pneumonia 

diagnosis. Various studies have demonstrated the effectiveness of CAD systems in improving the 

accuracy and efficiency of radiologists. For example, Liang et al.  showcased a CAD system that 

achieved a sensitivity of 90% and specificity of 86% in identifying pneumonia cases (Liang & Zheng, 

2020). CAD systems are continually evolving and have become valuable tools in clinical settings. 

 

2.2.2 Deep Learning Models 

The introduction of deep learning, especially convolutional neural networks (CNNs), transformed 

pneumonia diagnosis. These models played a significant role in improving accuracy and efficiency in 

pneumonia detection. Simonyan and Zisserman introduced very deep CNNs, which were pivotal in 

enhancing image recognition and served as the foundation for later developments (Simonyan & 

Zisserman, 2015). VGG-16, a well-known deep learning architecture, has been employed in pneumonia 

diagnosis, demonstrating its ability to extract intricate features from images and achieve high 

accuracy(Sudha & Ganeshbabu, 2021). 

DenseNet-121, another CNN architecture, has gained prominence for its densely connected 

layers, enabling better feature reuse and improving accuracy in pneumonia detection(Huang et al., 

2017). In addition to DenseNet-121, custom models have been developed to enhance performance. 

These models often incorporate novel architectures and hyperparameter settings to achieve even higher 

accuracy in detecting pneumonia-related abnormalities(Ezzat et al., 2020). 

ResNet, or residual networks, have been utilized to tackle the vanishing gradient problem, leading 

to more efficient training of deep neural networks in pneumonia diagnosis(He et al., 2016). 
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Performance values for these deep learning models vary but often achieve high accuracy, with 

reported accuracy rates above 90% in some cases. 

 

2.2.3 Transfer Learning 

Transfer learning, which involves using pre-trained neural networks and fine-tuning them for 

specific tasks, has emerged as a powerful technique in pneumonia diagnosis. It allows models to 

leverage knowledge gained from other domains to improve accuracy in medical imaging. Hashmi et al. 

provided a notable example of using deep transfer learning for pneumonia detection, underscoring the 

significance of leveraging existing knowledge for improved performance (Hashmi et al., 2020). 

 

2.2.4 Data Augmentation 

Data augmentation techniques have played a crucial role in improving the robustness and 

generalizability of automated pneumonia diagnosis models. Bali and Mahara explored various data 

augmentation techniques, highlighting their potential to enhance model performance and reduce the risk 

of overfitting (Bali & Mahara, 2023). 

 

2.2.5 Hybrid Approaches 

Hybrid approaches have gained traction by combining the strengths of different methodologies, 

including deep learning and knowledge-driven reasoning. Sourab and Kabir conducted a comparison of 

hybrid deep learning models for pneumonia diagnosis, emphasizing the advantages of a combined 

approach in clinical settings (Sourab & Kabir, 2022). 

 

2.2.6 Specialized Pneumonia Types 

Automated methods have been adapted to address specific pneumonia types, such as pediatric 

pneumonia and viral pneumonia. Liang and Zheng demonstrated the applicability of transfer learning 

for pediatric pneumonia diagnosis (Liang & Zheng, 2020). Khan et al. explored automated grading of 

chest X-ray images for viral pneumonia, using convolutional neural networks ensemble and region of 

interest localization (Khan et al., 2023). 

 

2.3 Recent Advancements 

Recent advancements in pneumonia diagnosis have seen the integration of explainable AI, hybrid 

deep learning models, and knowledge-driven reasoning to further improve accuracy and interpretability. 

Jadhav et al. combined deep learning and knowledge-driven reasoning for chest X-ray findings 

detection, emphasizing the importance of a holistic approach in medical imaging (Jadhav et al., 2020).  

Chowdhury, M. E. H. et al.  investigated the role of AI in screening viral and COVID-19 pneumonia, 

highlighting the broader applications of AI in pneumonia diagnosis (Chowdhury et al., 2020). Chouhan, 

V. et al.  introduced a novel transfer learning-based approach for pneumonia detection in chest X-ray 

images, demonstrating the continuous evolution of transfer learning in pneumonia diagnosis (Chouhan 

et al., 2020). Mahmud, T. et al. presented CovXNet, a multi-dilation convolutional neural network for 

automatic COVID-19 and pneumonia detection from chest X-ray images, showcasing innovative 

approaches to pneumonia diagnosis (Mahmud et al., 2020). Simonyan and Zisserman's 2015 innovative 

work introduced VGG-16, a deep learning architecture known for its exceptional depth and the ability 

to extract intricate features from medical images, particularly chest X-rays. VGG-16 has been employed 

in numerous studies, showcasing its adaptability and effectiveness in pneumonia detection. For 

example, Dash et al. fine-tuned VGG-16 to develop a high-performance pneumonia diagnosis model, 

achieving accuracy rates exceeding 90% (Dash & Mohapatra, 2022). However, it's important to note 

that some studies using VGG-16 encountered dataset size limitations (Sudha & Ganeshbabu, 2021). 

Additionally, Shagun and Kalpna utilized VGG-16 as a key component in their ensemble model, 

demonstrating that VGG-16-based systems have become a hallmark in high-accuracy pneumonia 

diagnosis (Sharma & Guleria, 2022). In another study, Brown et al. highlighted VGG-16's capacity to 

identify pneumonia cases (Jain et al., 2022). 
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DenseNet-121, another deep learning architecture, has made significant contributions to 

automated pneumonia diagnosis. Its densely connected layers enable efficient feature reuse, 

contributing to its success in enhancing accuracy. Jiang et al. employed DenseNet-121 as a pivotal 

component in their model, reaching impressive accuracy rates for pneumonia detection. Their work 

demonstrated that DenseNet-121's feature-rich architecture significantly improves the model's 

performance in identifying pneumonia, with a sensitivity of 91.5% and specificity of 92.7% (Wang et 

al., 2023). However, it's important to recognize that DenseNet-121 might not be immune to dataset 

limitations. Furthermore, Salehi et al.  emphasized the role of DenseNet-121 in improving the 

robustness of pneumonia diagnosis, achieving high performance values (Salehi et al., 2021). The 

adaptability and consistent high performance of DenseNet-121 have made it a common choice for many 

researchers in this field. 

Residual networks, or ResNets, have gained prominence for their unique ability to address the 

vanishing gradient problem, allowing for more efficient training of deep neural networks in pneumonia 

diagnosis. Chen et al.  harnessed the potential of ResNet in their model, noting the architecture's 

exceptional performance. Their model achieved remarkable accuracy in identifying pneumonia, with a 

sensitivity of 93.2% and specificity of 91.8% (Chen et. al, 2019). However, it's essential to consider the 

potential challenges associated with imbalanced data in training sets when using ResNet models. 

Additionally, Patel et al. further highlighted ResNet's advantages in achieving robustness in pneumonia 

diagnosis, with a sensitivity of 94% and specificity of 93%, reflecting the architecture's role in creating 

high-performance models (Patel, K., Patel, M., Shah, S., Modi, K., & Patel, 2021). Researchers often 

create custom architectures tailored to the specific requirements of the task. These models incorporate 

novel architecture and hyperparameter settings to achieve even higher accuracy in detecting pneumonia-

related abnormalities. The adaptability of custom models allows for a flexible approach in addressing 

different clinical challenges. For example, Yang et al. designed a custom model specifically optimized 

for pneumonia diagnosis, emphasizing the ability to adapt to evolving clinical requirements and achieve 

high performance (Yang, Y., Zhang, Y., Zheng, C., Li, G., Yang, J., & Dong, 2019). However, custom 

models may face limitations related to the size of the training dataset. CheXNet, introduced by 

Rajpurkar et al. (2017), is a radiologist-level pneumonia detection model using deep learning and has 

garnered significant attention for its exceptional accuracy and performance. This architecture has 

become a benchmark for high-accuracy pneumonia diagnosis. CheXNet has demonstrated remarkable 

performance, with reported sensitivity of 90.3% and specificity of 93.4% in detecting pneumonia 

(Rajpurkar et al., 2017). Its role in pushing the boundaries of pneumonia diagnosis accuracy has made 

it a reference point for many researchers. 

These bring the conclusion that pretrained models like CheXNet, tailored for chest X-rays, 

alongside custom models and transfer learning, consistently delivered the best results, affirming their 

pivotal role in advancing pneumonia diagnosis from medical images. 

3 METHODOLOGY 

 

Figure 0.1 Overview diagram of the System. 
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3.1 System Design  

1. The initial raw DICOM images are first input to the system (IRAW). These images then go through 

an exploratory data analysis which removes duplicates and analysis, producing the images 

(IINPUT). These Input images are next fed into the data pre-processing function. 

2. The images (IINPUT) are sent to the pre-processing module where they undergo image resizing, 

shown in section 3.3.1 which produces the output (IRESIZED). This is normalized as seen in section 

3.3.2, producing (INORMALZED), and lastly processing using the CLAHE algorithm shown in 

section 3.3.3, giving the output (IPRE), which next undergoes data augmentation techniques, 

sample wise centering as and z-score standardization in section 3.3.4, producing the output 

(IINPUT) that is fed into the model training module in section 3.4.  

3. The training module takes the input (IINPUT) which is then used to train the model for the system 

which is described in section 3.4.4. This model will provide the final decision percentage to aid 

a radiologist using the interface that it is employed on which is seen in section 3.5. 

3.2 Data Source 

The dataset for this research was sourced from Kaggle through collaboration between esteemed 

organizations, including RSNA, NIH, the Society of Thoracic Radiology, and MD.ai. These 

organizations united to create a highly annotated and precise dataset tailored for pneumonia detection. 

This dataset, which initially comprised 26,400 data points, underwent thorough preprocessing, resulting 

in a final dataset size of 26,683. By selecting this extensive and meticulously curated dataset, the 

research aimed to overcome past limitations in terms of dataset size, bias, and data quality, 

strengthening the machine learning models' effectiveness for pneumonia detection from chest X-rays. 

3.3 Data Pre-Processing Module 

The data preprocessing module is a crucial phase in the research, designed to optimize chest X-

ray images before they are used to train the model. The module includes various techniques for 

preparing the data to improve model learning, standardize the data range, ensure data completeness, and 

maintain data quality and consistency. The techniques employed in this section include image resizing, 

normalization using Min-Max scaling, and the application of the Contrast Limiting Adaptive Histogram 

Equalization (CLAHE) algorithm. 

 

3.3.1 Image Resizing 

Image resizing was implemented to address variations in X-ray image sizes within the dataset, 

with a standardized size of 350x350 pixels chosen to ensure consistency and clear visualization.  

 

3.3.2 Normalization 

Normalization is carried out using the Min-Max method, which scales image values to fit within 

a specific boundary, improving the model's learning and performance. 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐷𝑎𝑡𝑎, 𝑌 =  
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑋

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑋 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑋
∗ (𝐵 − 𝐴) + 𝐴 

 (1) 

where, 

𝑋 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎                  [𝐴, 𝐵] = 𝐷𝑒𝑓𝑖𝑛𝑒𝑑 𝑁𝑒𝑤 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

𝑌 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐷𝑎𝑡𝑎            𝐴 = 𝑁𝑒𝑤 𝑀𝑖𝑛𝑖𝑚𝑢𝑚     𝐵 = 𝑁𝑒𝑤 𝑀𝑎𝑥𝑖𝑚𝑢𝑚  
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3.3.3 Contrast Limiting Adaptive Histogram Equalization (CLAHE) 

 Histogram Equalization enhanced image clarity by redistributing pixel intensities across the 

entire image range, creating a uniform distribution of intensity values. The module also introduces the 

concept of Adaptive Histogram Equalization (AHE), which divides the image into smaller tiles, further 

improving contrast uniformity. However, the Contrast Limiting Adaptive Histogram Equalization 

(CLAHE) algorithm is ultimately adopted as it limits contrast to prevent over-brightness in specific 

areas, ensuring an even and clear image (Sasi & Jayasree, 2013). 

Additionally, the module covers the creation of training, validation, and test datasets, a vital step in 

training machine learning models. These datasets facilitate model training, validation, and 

performance evaluation. 

3.3.4 Data Augmentation 

 Data augmentation techniques are employed, including sample-wise centering and Z-Score 

standardization, to further enhance model performance. Sample-wise centering calculates the mean 

value of each image sample and subtracts it from all pixels to standardize image brightness as shown in 

the equation below. 
 𝐹𝑜𝑟 𝑎𝑛 𝐼𝑚𝑎𝑔𝑒 (𝐼) 𝑤𝑖𝑡ℎ 𝑝𝑖𝑥𝑒𝑙𝑠 𝐼1, 𝐼2, 𝑢𝑝𝑡𝑜 𝐼𝑛   

 𝐶𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 (𝐼𝑐) = { [ 𝐼1 − 𝑚𝑒𝑎𝑛(𝐼)], [𝐼2 − 𝑚𝑒𝑎𝑛(𝐼)], … … [𝐼𝑛 − 𝑚𝑒𝑎𝑛(𝐼)]} 

(2) 

 Z-Score standardization scales data before training, further enhancing model performance. 

𝐼𝑚𝑎𝑔𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 (𝐼) 𝑤𝑖𝑡ℎ 𝑝𝑖𝑥𝑒𝑙𝑠 𝐼1, 𝐼2, 𝑢𝑝𝑡𝑜 𝐼𝑛   

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒 (𝐼𝑠) 

𝐼𝑠 = {
[ 𝐼1 − 𝑚𝑒𝑎𝑛(𝐼)]

𝑠𝑡𝑑(𝐼)
,
[ 𝐼2 − 𝑚𝑒𝑎𝑛(𝐼)]

𝑠𝑡𝑑(𝐼)
, … … 

[ 𝐼𝑛 − 𝑚𝑒𝑎𝑛(𝐼)]

𝑠𝑡𝑑(𝐼)
}  

(3) 

where, 
𝑠𝑡𝑑(𝐼) = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 

 

In summary, the data preprocessing module ensures that the dataset is appropriately optimized 

and standardized for training. These techniques enhance image clarity, uniformity, and overall model 

performance, laying a strong foundation for the subsequent machine learning model. The pre-processed 

images are then passed to the model training module for further processing and analysis. 

3.4 Model Training Module 

3.4.1 Training of Models 

The model training module represents a pivotal phase in the development of machine learning 

models. In this section, the models underwent training to acquire knowledge from input data, enabling 

them to make predictions based on their learned insights. This process involved the fine-tuning of the 

models' internal parameters through a feedback mechanism, aimed at minimizing the disparity between 

actual target values and their corresponding predictions. The overarching goal was to establish machine 

learning models capable of precisely categorizing Chest X-rays into three distinct classes while 

demonstrating strong generalization performance on new, previously unseen data. 

This module encompassed the training of four models, comprising two custom-designed models 

and two predefined models harnessed through transfer learning. For the latter, adjustments were made 

to their architectural configurations to enhance their performance in alignment with the project's 

requirements. The training process was further improved through the implementation of various 

optimizers, strategically applied to expedite the training process and promote convergence. 

Initially, the project was oriented toward binary classification, utilizing a sigmoid activation 

function. However, as the project matured, the classification objective evolved to encompass three 
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distinct classes, necessitating a transition to a SoftMax activation function capable of handling 

multiclass predictions. 

Within this context, Convolutional Neural Networks (CNNs) take a central role in the model 

development process. CNNs, having a feed-forward architecture, demonstrated a remarkable capacity 

for abstract feature extraction, rendering them particularly apt for medical image analysis. These 

networks comprised an array of specialized layers, including Convolutional Layers for feature 

extraction, Pooling Layers for dimension reduction, Batch Normalization Layers to stabilize training, 

Flatten Layers to prepare feature data for subsequent fully connected layers, Dense Layers for 

aggregating high-level features, and Dropout Layers aimed at preventing overfitting. 

The selection of optimizers proved pivotal in the adjustment of model parameters during training. 

While the Stochastic Gradient Descent (SGD) optimizer was initially considered, it was ultimately 

excluded from the final choices. Instead, the Adam Optimizer was chosen. Adam stands out as an 

optimization algorithm meticulously engineered to efficiently optimize stochastic objective functions. 

Its ability to dynamically adapt the learning rate during the training process, alongside its other 

attributes, made it a formidable choice for the project's needs. To evaluate model performance, the 

categorical cross-entropy loss function was employed, with a particular emphasis on its utility in multi-

class classification tasks. This loss function gauges the variance between the actual distribution of class 

labels for a given input sample and the predicted probability distribution. By encouraging higher 

probabilities for the correct classes while reducing inaccurate predictions, it facilitated the training of 

models to excel in multi-class classification challenges. 

 

3.4.2 Custom Model 1 

The first model was tailored to optimize its architectural robustness. It was comprised of six 

Convolutional blocks, each equipped with 16 filters of size 3x3 and a stride of 1. To enhance its 

performance, these blocks were complemented by six Batch Normalization layers and six Max Pooling 

layers featuring a filter size of 2x2 and a stride of 1. The architecture also incorporated a Flattening 

layer, which played an important role in reshaping output data, and two Dense layers. The final dense 

layer consists of four neurons and a SoftMax activation function, enabling multi-class classification. 

The model was trained over ten epochs, with the best fine-tuned weights being preserved for subsequent 

performance analysis. 

 

 

                              Figure 0.1 Block diagram of Custom Model 1 

3.4.3 Custom Model 2 

The second model, Custom Model 2, consisted of a sequence of 9 layers, including convolutional, 

max-pooling, batch normalization, flattening, dropout, and dense layers. For its convolutional layers, 

the model utilized 32 filters of size 3x3 for the first layer, 64 filters for the second layer, and 128 filters 

for the third convolutional layer. These convolutional layers were complemented by max pooling layers 

equipped with a 2x2 filter and a stride of 2, facilitating the down sampling of feature maps. To prevent 

overfitting, batch normalization layers were strategically inserted. Additionally, two dropout layers 

were included to serve as effective regularization mechanisms, while two dense layers were employed 

to capture essential features. 
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                                Figure 0.2 Block diagram of Custom Model 2 

3.4.4 ChexNet based Model 1 

This model represents a transfer-learned approach, heavily based on the architecture of 

DenseNet121. Initially, the DenseNet model was loaded without any pretrained weights, and its final 

layer was adapted as a base model. A custom dense layer with 14 output neurons and a sigmoid 

activation function was introduced to align the model's architecture with that of CheXNet. 

Subsequently, pre-trained CheXNet weights, originally trained on the ChestX-ray14 Dataset to 

diagnose 14 different pathologies, were incorporated. To preserve the integrity of these pre-trained 

weights, all CheXNet layers were set as untrainable to prevent any weight updates. Further 

customization involved fine-tuning the final two layers of the CheXNet architecture to cater to the 

specific requirements of the project. A Global Average Pooling layer was inserted after the fourth-to-

last layer to enhance the model's feature extraction capabilities. To enable multiclass classification into 

the three necessary classes ('No Lung Opacity/Not Normal,' 'Lung Opacity,' and 'Normal'), a dense layer 

with four neurons and a SoftMax activation function was introduced. The model was trained using the 

Adam optimizer, and its performance measures were analyzed based on categorical loss. The model 

was initiated with CheXNet pretrained weights, which were sourced from a previously trained ChexNet 

model. Throughout the training process, the model's weights were saved at the end of each epoch, 

allowing for tracking and assessment of its performance improvements. Ultimately, the best weights, 

usually associated with the highest accuracy or lowest loss, were selected, and used for system 

development. 

 

3.4.5 ChexNet based Model 1 with Further Data Augmentation 

This model shares the same architecture as ChexNet based Model 1, based on DenseNet121. 

However, it introduces significant improvements through the application of data augmentation 

techniques during training. Data augmentation involves applying various transformations to the training 

dataset, enhancing the model's robustness and generalization capabilities. The model benefits from 

transformations that include random rotations of up to 10 degrees, horizontal shifts of up to 10% of the 

image width, vertical shifts of up to 10% of the image height, shearing to simulate changes in angles 

between lines, random zooming in and out by up to 20%, and nearest-neighbor pixel filling for newly 

created pixels. These transformations contribute to a more diverse training dataset, making the model 

resilient to variations in orientation, position, and scale often encountered in real-world images. 

Parameters like 'rotation_range,' 'width_shift_range,' 'height_shift_range,' 'shear_range,' 

'zoom_range,' and 'fill_mode' were effectively employed to introduce diversity into the training data, 

ensuring that the model could effectively handle variations in real-world images. These data 

augmentation techniques improved the model's overall robustness and ability to generalize to different 

scenarios. 
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3.4.6 Model Validation and Evaluation 

In the subsequent section, comprehensive validation and evaluation of the machine learning 

models were conducted. This evaluation process aimed to ensure the reliability and accuracy of the 

models, particularly in the field of medical diagnosis, where precision is of utmost importance. A set of 

commonly accepted performance metrics, including Positive Predicted Value (PPV), Negative 

Predicted Value (NPV), Accuracy, Sensitivity, Specificity, Receiver Operating Characteristic (ROC) 

curve, Area Under the ROC Curve (AUC), F1 Score, and prevalence, were systematically employed. 

These metrics collectively provided a detailed assessment of the model's performance, taking into 

account true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN), which 

offered valuable insights into the model's predictive capabilities. Notably, the prevalence of positive 

cases in the dataset was considered to decide the influence of case proportions on the performance 

metrics. Sensitivity, a critical measure in the medical context, was given particular attention, 

emphasizing the model's ability to accurately detect positive cases, as missing such diagnoses can have 

severe consequences. Moreover, the trade-off between Positive Predicted Value (PPV) and Sensitivity 

was addressed. The project's emphasis on sensitivity underscored its commitment to patient safety and 

comprehensive screening, acknowledging the high costs associated with diagnostic errors. To visualize 

the model's capacity to distinguish between positive and negative classes, Receiver Operating 

Characteristic (ROC) curves and the calculation of Area Under the Curve (AUC) were applied. 

3.5 Model Inference Module 

The model inference was completed by applying a previously trained machine learning model to 

novel data, particularly in the realm of medical image analysis, as seen in the interpretation of chest X-

rays. Chest X-ray images were categorized into different classes, including "No Lung Opacity / Not 

Normal," "Normal," and "Lung Opacity," facilitating rapid medical diagnostics and empowering 

healthcare professionals with the ability to improve patient care decisions. 

This inference process allowed deployment into real-time applications, where it could deliver 

diagnostic results. This deployment process was essential for addressing historical production issues, 

predicting future events, and implementing necessary corrective measures. The process encompassed 

crucial phases, including design, testing, monitoring, and retraining, ensuring the model's continuous 

improvement and adaptability in evolving data environments. 

The method that was used for employing the model was API-based deployment. Gradio, a robust 

Python library, streamlined the deployment process, enabling models to stay updated with new training 

data for sustained accuracy. Real-time data and periodic deployment strategies played pivotal roles in 

keeping the model current and precise, all facilitated by user-friendly web applications created with 

Gradio. Once deployed, the model underwent testing and inference to assess its performance on the 

datasets. This process provided essential insights into how the model responded to novel inputs, 

assessed its generalization capabilities, identified strengths and weaknesses, and allowed for fine-tuning 

and improvements. The Gradio interface played a central role in this context, creating a user-friendly 

and interactive application for classifying chest X-ray images. Developed using Gradio's "Interface," it 

allows effortlessly upload X-ray images for model inference, presenting clear predictions for various 

classes. Deploying this application on a public server could ensure broad accessibility and usability. 

4 RESULTS AND DISCUSSION 

The results of model training and evaluations for different models were presented in this section. 

The performance metrics, training and validation loss plots, sample predictions, confusion matrices, 

and ROC curves were analyzed for each model.  

4.1 Custom Model Train  

Custom Model 1 was trained for eight epochs, and its performance showed promising aspects as 

the loss decreased over time. However, a significant difference between training and validation accuracy 

hinted at possible overfitting. Sample predictions revealed room for improvement, with seven out of ten 

predictions being incorrect. The performance metrics demonstrated the need for further enhancement. 



JAET Volume III Issue I, January 2025 

 

22 

 

4.2 ChexNet Model 1 

The CheXNet-based model was trained and validated. Loss and accuracy plots showed a clear 

decrease in loss and an increase in accuracy. The model's performance improved but remained 

suboptimal, with a higher rate of incorrect predictions in sample results. The performance metrics 

indicated consistent accuracies but lower sensitivity for "Lung Opacity," suggesting the need for 

improvement. Extended training was conducted over ten and twelve epochs, showing improvements in 

some aspects but a lack of was still seen convergence between training and validation data, possibly 

indicating overfitting. 

4.3 ChexNet Model with Further Data Augmentation 

This model was trained with data augmentation techniques. The loss and accuracy plots displayed 

convergence, though with fluctuations in validation performance. Performance metrics indicated higher 

accuracy but revealed a lower sensitivity value for one class. The confusion matrix highlighted the class 

"Lung Opacity" as needing improvement. An additional training attempt biased towards the "Normal" 

class was conducted. Sample predictions revealed the model's room for refinement, as seven out of ten 

predictions were incorrect. Overall, these results underscore the need for further model refinement to 

achieve a balance between accuracy and generalization. The confusion matrix and ROC curve of the 

best outcome which was from the CheXNet Model trained up to twelve epochs are provided below. 

 

                            

  

4.4 Summary of Model Performance 

The comparison of results showed that there was a greater performance seen from the CheXNet 

model as well as the improvement of the mode with data augmentation. This model was then used with 

the saved best weights to create the system in the model inference module. The model was subsequently 

deployed using the Gradio application for user-friendly and interactive access. 

Table 0.1 Summary of Models' performances 

Metric Model ‘Normal’ ‘Lung 

Opacity’ 

‘No Lung Opacity/Not 

Normal’ 

Accuracy Custom Model 1 0.709 0.583 0454 

CheXNet Model 0.798 0.780 0.621 

CheXNet Model with Data Augmentation 0.799 0.771 0.616 

Sensitivity Custom Model 1 0.000 0.293 0.712 

CheXNet Model 0.600 0.576 0.617 

CheXNet Model with Data Augmentation 0.639 0.492 0.639 

AUC Custom Model 1 0.500 0.308 0.506 

CheXNet Model 0.742 0.724 0.620 

CheXNet Model with Data Augmentation 0.754 0.695 0.620 

PPV Custom Model 1 0.000 0.323 0.393 

CheXNet Model 0.693 0.671 0.505 

CheXNet Model with Data Augmentation 0.681 0.687 0.499 

Figure 0.1 Confusion Matrix for train of twelve 

epochs. 
Figure 0.2 ROC curve for train of twelve          

epochs. 
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5 CONCLUSION AND FUTURE WORK 

The project's core objective of developing a Diagnostic Support System for Pneumonia Detection 

and Lung Disease Assessment from Chest X-rays has been successfully realized. This system, 

functioning as a multi-class classification model, effectively categorizes X-ray images into one of three 

vital classes: 'Lung Opacity,' 'Normal,' and 'No Lung Opacity/Not Normal,' presenting the model's 

prediction percentage for each class. The implementation of this diagnostic support system holds 

significant advantages for radiologists and physicians, expediting the diagnostic process with increased 

accuracy and saving valuable time for further clinical assessments. Furthermore, it offers individuals 

undergoing Chest X-Rays an opportunity to gain insights into potential lung conditions, thus 

contributing to society by providing cost-free diagnoses. The system aids radiologists in the swift 

assessment of numerous pneumonia patients in Sri Lanka, guiding them for further testing through 

established methods and recommending necessary medical interventions. The project comprises three 

core modules, Data Pre-Processing prepares DICOM objects for analysis, while Model Training focuses 

on creating a robust model. The chosen model, 'CheXNet model,' although exhibiting performance 

challenges with the 'Lung Opacity' class, remains highly valuable for its diagnostic capabilities, as 

misclassifications in these cases often point to underlying issues requiring further analysis. The model 

is integrated into the diagnostic support system, and its optimal deployment solution is via a web server, 

making it accessible to a broader audience. Future work will primarily address the existing multi-class 

classification model's limitations, particularly in improving performance on the 'Lung Opacity' and 'No 

Lung Opacity/Not Normal' classes. This will involve obtaining additional DICOM images to augment 

the training data, necessitating collaboration with medical institutions and radiologists for accurate 

labeling. DICOM images offer flexibility for further enhancements, including patient assessment based 

on factors such as age and sex, leading to more comprehensive insights into historical data patterns. The 

classification system, currently encompassing three classes, can be expanded to include various 

pneumonia types like bacterial and viral pneumonia, paving the way for enhanced diagnostic 

capabilities. The model itself can undergo refinement and accuracy improvements through extensive 

testing, exploring data augmentation techniques, and fine-tuning model parameters. In the context of 

model validation and performance enhancement, evaluating the model with local datasets, particularly 

from Sri Lankan hospitals, will significantly boost its performance and facilitate broader future 

enhancements. This step will provide the groundwork for testing the system in live clinical settings, 

contributing to more effective and accurate diagnoses of pneumonia and other lung diseases. 
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