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Abstract Dissolved gas analysis (DGA) is one of the popu-
lar and widely accepted methods for fault diagnosis in power
transformers. This paper presents a novel DGA technique to
improve the diagnosis accuracy of transformers by analysing
the concentrations of five key gases produced in transform-
ers. The proposed approach uses a clustering and cumulative
voting technique to resolve the conflicts and deal with the
cases that cannot be classified usingDuval Triangles, Rogers’
Ratios and IECRatiosMethods. Clustering techniques group
the highly similar faults into a cluster providing a virtual
boundary between dissimilar data. A cluster of data points
may contain single or multiple types of faulty transformers’
datawith different distinguishable percentages. The k-nearest
neighbour (KNN) algorithm is used for indexing the three
closest clusters from an unknown transformer data point and
allows them to vote for single or multiple faults categories.
The cumulative votes have been used to identify a trans-
former’s fault category. Performance of the proposedmethod
has been compared with different conventional methods cur-
rently used such as Duval Triangles, Rogers’ Ratios and IEC
Ratios Method along with published results using computa-
tional and machine learning techniques such as rough sets
analysis, neural networks (NNs), support vector machines
(SVMs), extreme learning machines (ELM) and fuzzy logic.
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The experimental comparisonwith both published and utility
provided data show that the proposed method can signif-
icantly improve the incipient fault diagnosis accuracy in
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1 Introduction

A power transformer is one of the most important and
expensive components in power transmission and distribu-
tion systems [1]. Its precise operation is essential for ensuring
the reliable and stable operation of a power system. Any
fault in the power transformer may lead to the unscheduled
outages resulting in interruption of power supply. Failure of
transformers hampers the stability of operation and causes a
great loss to the utilities. As sudden failure of a transformer
can result in an explosion, it has significant implications both
for quality of service and it poses a risk to both maintenance
crew and the general public. Therefore, incipient fault diag-
nosis and condition monitoring of power transformers are
both gaining attention [2], by the utilities to ensure continu-
ous operation and minimizing the operational risks.

Due to the continuous operation and variable loading,
transformers are always subjected to electrical, thermal,
mechanical and chemical stresses. As a result, different
types of combustible and non-combustible gases, such as
hydrogen (H2), oxygen (O2), nitrogen (N2), carbon diox-
ide (CO2), carbonmonoxide (CO), methane (CH4), ethylene
(C2H4), ethane (C2H6), acetylene (C2H2), propane (C3H8)

and propylene (C3H6), are released and dissolved in trans-
former oil [3]. Moreover, the excessive thermal, electrical
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Fig. 1 Permissible concentration of dissolved gases in a healthy trans-
former [10]

and chemical stresses change the dielectric properties and
mechanical strength of cellulose paper and produce fura-
noid compounds, namely 2-furfural (2-FAL), 5-Hydroxy
methyl-2-furfural (5-HMF), 5-Methyl-2-furfural (5-MEF),
2-Furfurol (2-FOL) and 2-Acetylfuran (2-ACF), which are
partially soluble in oil [4,5]. To monitor the insulation con-
dition and detect faults in a transformer, different techniques
such as dissolved gas analysis (DGA), Furan analysis, degree
of polymerisation (DP) measurement, gas chromatography
(GC), Mass chromatography (MC), high-performance liquid
chromatography (HPLC) and moisture analysis are available
[6]. Among these, DGA is a non-invasive, proven and widely
accepted method to detect incipient faults in transformers.
The DGA method can be used to continuously monitor the
overall condition of transformers and generate advancewarn-
ings of newly developing faults. Therefore, operators can
conveniently plan their remedial action following the total
gas production or the production rate of individual gases that
minimizes the risk of premature failure.

To analyse the measured gas concentrations, DGA tech-
niques such as the family of Duval Triangles, Key Gas,
Modified Rogers’ Ratios, Doernenburg and IEC Ratios have
been used over the last few decades [7,8]. The Duval Tri-
angles are one of the preferred methods for many utility
companies, as they do very well in classifying incipient
faults, and can assess the state of insulation in transformers.
However, there are cases where the Duval Triangles fail to
produce any classification and there is a chance of misclas-
sification near the boundary between adjacent regions [9].
To investigate these unusual cases, a link has been estab-
lished with a large utility company in Western Australia
having more than 350 power transformers in operation. The
company primarily uses Duval Triangles to assess the over-
all condition of their transformers. They also consider IEC,
Modified Rogers’ Ratios and Key Gas methods before clas-
sifying their transformers into a fault category, especially for
the cases when Duval Triangles fail or ambiguously classify
a transformer. Additionally, over time, gases are produced
by normal operation of transformers without indicating any
fault. Consequently, there is a chance of misclassification

of healthy transformers. According to [10], the permissible
limit of dissolved gases in transformer oil corresponding to
the operating time of a healthy transformer is shown in Fig. 1.

In this paper, a novel fault diagnosis technique has been
proposed which can effectively classify the critical cases
where there is a contradiction between various Duval Tri-
angles and cannot be classified by the conventional ratio
methods. The arrangement of the paper is as follows. Sec-
tion 2 describes the motivation of the research. Section 3
presents the basic concept of k-means algorithm (KMA).
Section 4 describes the proposedmachine learning technique
utilizing k-means clustering and k-nearest neighbour pat-
tern classification. Section 5 presents the results that were
achieved with the method, Sect. 6 presents a case study and
Sect. 7 presents a summary of the results and conclusions.

2 Motivation of research

DGA is one of the proven methods that is used widely by
many utilities for condition monitoring and fault diagnosis
in power transformers. Due to their continuous operation,
the normal ageing of transformer insulation is inevitable.
Frequent overloading and short circuit incidents can create
electrical, mechanical and thermal stresses in transformer
insulation that degrade the dielectric properties of insulation
and increase its ageing rate. The decomposition of insulat-
ing material increases the operational risk to transformers
andproduces several combustible andnon-combustible gases
that become partly dissolved in transformer oil. In DGA-
based analysis, the concentration and production rate of gases
are measured and continuously monitored to assess the insu-
lation condition of a transformer and locate the sources of
faults. To interpret the dissolved gases, a graphical technique
like the Duval Triangles and different ratio methods such as
Rogers’ Ratios, Doernenburg Ratios, IEC Ratio, Single Gas
Ratio and the Key Gas method are used over long periods
of time. All of these conventional methods are very simple
and easy to implement. However, different methods have dif-
ferent advantages and limitations. Therefore, comparison of
the results from different methods on the same sample may
lead to contradictions, and there is no clear way to prioritize
one result over another, leading to ambiguity [11]. The accu-
racy of the IEC method is affected by the incomplete coding
and absolute code boundary. It cannot identify the fault sam-
ples, if they fall outside the definite ratio limits. In addition,
the interference problem between low-energy discharge (D1)
and high-energy discharge (D2) of this method may lead to
misleading classification [12]. The classification of Rogers’
Ratios is not precise for detecting all faults [12]. It givesmore
accurate diagnosis for the low thermal (T1) fault. The Doer-
nenburg method can only provide three types of diagnosis.
It cannot distinguish the severity of thermal decomposition.
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Table 1 Rogers’ ratios [13]

Case R2 = C2H2/C2H4 R1 = CH4/H2 R5 = C2H4/C2H6 Suggested fault diagnosis

0 <0.1 >0.1 to <1.0 <1.0 Unit normal

1 <0.1 <0.1 <1.0 Low-energy density arcing (LEDA)/PD

2 0.1 to 3.0 0.1 to 1.0 >3.0 Arcing-high-energy discharge (AHED)

3 <0.1 >0.1 to <1.0 1.0 to 3.0 Low-temperature thermal (LTP)

4 <0.1 >1.0 1.0 to 3.0 Thermal <700◦C (T2)

5 <0.1 >1.0 >3.0 Thermal >700◦C (T3)

Table 2 Ratio limits for
respective faults based on
IEC60599 (2007)

Case Characteristic fault C2H2/C2H4 CH4/H2 C2H4/C2H6

PD Partial discharge – <0.1 <0.2

D1 Low-energy discharges >1 0.1 to 0.5 >1.0

D2 High-energy discharges 0.6 to 2.5 0.1 to 1.0 >2.0

T1 Thermal fault <300
◦
C – >1.0 <1.0

T2 Thermal fault 300 to 700◦C <0.1 >1.0 1.0 to 4.0

T3 Thermal fault >700◦C <0.2 >1.0 >4.0

All these ratio methods do not involve any mathematical
formulation and their accuracy is dependent on the concentra-
tion and ratio of the key gases. Moreover, in some cases, the
calculated ratios do not fall within any of the fault classes and
remain unclassified. TheDuval Triangles always gives a fault
diagnosis even when a transformer is known to be healthy.
The classicalDuval Triangle cannot accurately detect the par-
tial discharge (PD) and thermal fault. For mineral oil-filled
transformers, if the fault classification is a thermal fault or
a partial discharge by the classical triangular method, then
Triangles 4 and 5 must be used for further clarification. In
practice, there are cases where contradictory classifications
are produced by Triangles 4 and 5. Moreover, all triangles
have an unclassified region. Consequently, the accuracy of
fault classification is dependent on the expert’s experience
supported by other ratio methods. The classification of trans-
formers’ incipient faults following the Rogers’ Ratios, and
IEC ratios has been tabulated in Tables 1 and 2, respectively.

To overcome the limitations of these conventional
approaches, various computational and machine learning
techniques such as support vector machines (SVMs) [2],
neural networks (NNs) [14], extreme learning machines
(ELM) [15], fuzzy logic [16,17] and rough sets (RS) detec-
tion [18] have been combined with DGA interpretation
techniques to analyse the incipient faults in transformers.
These new techniques have improved the accuracy of fault
diagnosis and solved the interference problem between fault
classes. The combined approach is helping researchers and
utilities to explore the relationship between different fault
patterns and their characteristic parameters. In this research,
a modified clustering technique and k-Nearest Neighbour
algorithm have been used, and a modified cumulative vot-

ing mechanism has been proposed to classify and predict the
incipient faults in power transformers.

3 Basic concepts of K-means algorithm

Cluster analysis is prevalent in any discipline that aims to find
the natural grouping, detect anomalies and identify salient
features of data points in a given data set. The groups are
called clusters and the region belonging to a cluster is a
Voronoi cell [19], inwhich the density of similar data points is
higher than in other regions.Agoodclustering techniquegen-
erally uses the splitting, merging or randomized approaches
for partitioning given data points into clusters so that the for-
mal objective function is optimized [19]. The most common
objective in clustering technique is to minimize the squared
error between the empirical mean of a cluster and the points
lying in its Voronoi cell. The k-means algorithm (KMA) is
one of the simplest and widely used unsupervised learning
algorithm that minimizes the clustering error and can be used
to discover the natural grouping of data points [19,20]. For
a set of n data points X = {x1, x2, . . . , xn}, in a real d-
dimensional space Rd , KMA determines a set of K cluster
C = {µ1, µ2, . . . , µk} in Rd such that the mean squared
Euclidean distance from each data point to the nearest centre
is minimized. Each of the clusters is associated with a subset
of X such that any xi is a member of only one cluster. The
subset of X that cluster around µk will be referred to as Ck .
Each of the subsets is disjoint and, therefore, the union of all
Ck provides the entire set of points and can be expressed as,

K⋃

k=1

Ck = X. (1)
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According to [21], the sum of the squared error for the set of
clusters C can be defined as

J (C) =
K∑

k=1

∑

xi∈Ck

xi − µ2
k . (2)

Although, the objective function J (C) decreases with the
increasing number of clusters K ,and become zero when
K = n, the number of cluster centres and data points are
equal. It needs to be minimized when K < n using KMA.
The steps of KMA are as follows [22–24]:

1. Place K centres into the d-dimensional space of the data
points X . The locations are known as initial centres (µk)

of the Ck clusters.
2. Assign data points to the Voronoi cell (group) which cen-

tre has the closest distance to form subsetsCk .
3. Compute new cluster centres µkfrom the mean of data

points lying in their Voronoi cell.
4. Repeat steps 2 and 3 until the square error is reduced to a

pre-determined value or the centroids are immobilized.

Although KMA is a simple and popular method in cluster-
ing applications, it is very sensitive to the initial positions
of the cluster centres [21]. It is an NP-hard algorithm
and, therefore, a globally optimal solution cannot be found,
except for unrealistically small values of n and K . However,
there are well-established heuristic algorithms, such as those
employed here, for providing adequate albeit suboptimal
clustering when n and K are larger. In this work, a number
of heuristics like Lloyd’s algorithm and Linde–Buzo–Gray
(LBG) have been combined with conventional KMA [19].
These approaches offer a more efficient clustering algorithm
that can minimize the clustering error, employed by the con-
ventional KMA as a local search procedure. To solve the
K clustering problem, the proposed hybrid approach pro-
ceeds in an incremental way. Initially, a single centre is
calculated following the LBG algorithm and placed in the
d-dimensional space. The centre is calculated from the geo-
metric mean of the given data points. In each stage, the old
centroids are split into two.Moreover, in each stage of the
LBG algorithm, the nearest data points to each centre are
computed and the centres are moved to the centroid of data
points lying in their Voronoi cell. These steps are repeated
until some convergence condition is met. The only difference
between Lloyd’s and LBG algorithm is that LBG specifies
the initial placement of a centre which is absent in Lloyd’s
algorithm [19]. A detailed procedure of the LBG algorithm
has been discussed in [25]. In the LBG algorithm, there is
no guarantee that every cluster centre will have some data
association. This limitation can be overcome by supervising
the splitting and relocating any centres where cluster (Ck)

becomes an empty set. The centres obtained from supervised
LBGcan be used as initial centres forKMA to take advantage
of global minima. This hybrid method reduces the clustering
error that results from the local convergence. Finally, the fea-
ture of clusters with the collaboration of k-nearest neighbour
(KNN) algorithm can be used in a diagnostic decision table
to classify the fault category of transformers.

4 Methodology

The methodology involved a development of a clustering
process combined with a cumulative voting technique to
determine the fault category of a transformer. This section
includes data collection, pre-processing, model develop-
ment, neighbour selection and training stagewhich have been
discussed below.

4.1 Data collection and processing

Data of combustible gases generated from the insulating oil
in 376 power transformers have been collected by a large
utility company in Western Australia. The gas concentra-
tions are measured in parts per million (ppm) by analysing
an oil sample drown from each transformer under labo-
ratory conditions. The measured gas concentrations have
been analysed using the Rogers’ Ratios, Duval Triangles,
Doernenburg and IEC ratio methods and verified by the util-
ity’s experts before labelling them into a fault category. It
is presumed that the final classification from the combined
approach of different conventional methods, sophisticated
software analysis and experts judgement is accurate and reli-
able. To verify the accuracy of suspected faulty transformers,
these transformers have been removed from the services
for investigation, and the findings have exactly matched
with the expert’s fault classification. The proposed method
is based on a clustering technique that uses the percent-
age concentrations of the five combustible gases comprising
Hydrogen (H2), Methane (CH4), Ethylene (C2H4), Ethane
(C2H6) and Acetylene (C2H2). The sum of the five gas
concentrations has been calculated as per (3). The sum-
mation is defined as the total combustible gases (TCG).

TCG = H2 + CH4 + C2H4 + C2H6 + C2H2 (3)

Therefore, the percentage of those individual gases has been
calculated and used as an input for the proposed method to
classify the testing data sets into seven targeted fault cate-
gories. The individual percentage calculation procedure and
the targeted fault category with their fault code have been
shown in Table 3.

Moreover, the collected data sets are divided into two
subsets. The first subset (318 measurements) is used as a
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Table 3 Input and targeted
output of the proposed method

Input Targeted fault category Fault code

1. %H2 = H2
TCG × 100 1. Partial discharge 1. PD

2. %CH4 = CH4
TCG ×100 2. Discharge of low energy 2. D1

3. %C2H4 = C2H4
TCG × 100 3. Discharge of high energy 3. D2

4.%C2H6 = C2H6
TCG × 100 4. Thermal fault, t < 150◦C 4. S

5. %C2H2 = C2H2
TCG ×100 5. Thermal fault, 150

◦
C < t < 300◦C 5. O

6. Thermal fault, 300
◦
C < t < 700◦C 6. C

7. Thermal fault, t > 700◦C 7. T3

Table 4 Probability of a
transformer fault following their
association with a cluster centre

Cluster centres C (%) D1 (%) D2 (%) O (%) PD (%) S (%) T3 (%)

µ1 100

µ2 80 10 10

µ3 10 90

…… …… ……. ……. …….. …… ….

µ15 100

µ16 25 75

µ17 67 33

… …… …… ……. ……. …….. …… ….

µ25 8 92

µ26 86 14

µ27 100

… …… …… ……. ……. …….. …… ….

µ32 100

µ33 100

µ34 100

Table 5 Modified voting
metrics

Neighbours C D1 D2 O PD S T3

C3 10 × 0.65 90 × 0.65

C2 80 × 0.25 10 × 0.25 10 × 0.25

C17 67 × 0.10 33 × 0.10

Total vote 13.2 20 2.5 64.3

Table 6 Comparison of Rogers’
ratios, IEC ratios and the
proposed method

Test methods Unresolved diagnosis Wrong diagnosis Accuracy (%)

Roger’s ratios 2 9 75.67

IEC ratio 27 8 74.19

Proposed method − 4 93.10

training data set and the second subset (58 measurements)
which could not classified easily by the Duval Triangles or
come with a conflicting classification due to the overlapping
between different faults.

4.2 Proposed model

In this work, a hybrid clustering technique has been used
because it has advantages over the Duval Triangles method.

In Duval Triangles, five-dimensional key gases are mapped
into a set of two-dimensional spaces to make a classification
of transformer faults based on a set of linear boundaries. This
dimension-reducing mapping throws away some valuable
information. The proposed clustering technique preserves all
of the five-dimensional gases information in the expectation
that it can do better than the Duval Triangles and other ratio
methods, in the cases when they fail or contradict each other.
There are two stages in the proposed approach. First, a set of
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clusters based around the global k-Means Algorithm (KMA)
is generated. The clusters are representative of various fault
categories. After clustering, the KNN algorithm has been
used to decide which clusters are closest to the data set of an
unclassified transformer. In this research, three closest clus-
ters have been identified based on their Euclidean distances
from the testing data. The specific procedure for clustering
the data points and neighbours selection has been discussed
in the following sections and a summary of the comparative
performances can be seen in Tables 7, 8, 9. However, a work-
flow of the proposed model with the combination of Duval
Triangles has been shown in Fig. 2.

4.3 Clustering procedure

The clustering of the training data points has been com-
pleted using modified KMA. To perform the clustering of
training data points X = {x1, x2, . . . , xn}, an initial cluster
centre µ1 ∈ C for KMA is computed following the LBG
algorithm (mean of all data points) and placed in the five-
dimensional space

(
R5

)
formed by the percentages of five

gas concentrations. The number of cluster centres gradu-
ally increased to K (where K = 2n for n = 1, 2, . . . , 6)
through successive iterations. In each stage of iteration,
the old centre(s) is split into two and Euclidean distances
from the centres to all data points are calculated. Let the
C j represent the data points (neighbourhood) in a Voronoi
cell for which µ j is the nearest centre. The set of data
points lying to the cluster C j can be expressed as follows

C j =
{
xi :

∣∣∣
∣∣∣xi −µ j ||2 ≤

∣∣∣
∣∣∣ xi −µk ||2∀ k=1, 2, 3, . . . , K

}

(4)

where ||xi −µ j ||2 is the Euclidean distance between a train-
ing data points xi (i = 1, 2, 3, . . . , n) and the cluster centre
µ j , and K is the number cluster centres. After finishing the
allocation of all data points to the Voronoi cells of cluster
centres, for the next iteration, the position of cluster centres
moves to the centroid of data in subset C j . The new posi-
tion of the cluster centres can be calculated by the following
equation.

µ j =
∑

xi∈C j
xi

∑
xi∈C j

1
(5)

In the next stage, the distances of all points from the new
position of centres are again calculated and associated to
centres having smallest Euclidean distances. These steps are Ta
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repeated until µ j becomes immobilized or the square error
J (C) is reduced to a pre-determined value [22].

4.4 Neighbor selection and voting

In this section, the distances to three closest cluster centres
µi , µ jandµk from any unknown transformer data point x is
measured and sorted into ascending order of distance. In a
later stage, the clusters have been used in a votingmechanism
to classify a faulty transformer. In the case of conventional
voting, a decision is taken based on the majority opinion. For
instance, if one neighbouring cluster is associated with a T1
fault, the second one might be associated with T2 and third
neighbour might be labelled as a T1 fault, then the major-
ity of votes for T1 will classify the transformer as having
a T1 type fault. As the clusters are sometimes straddling
the boundaries of the Duval Triangles method, a cumulative
voting system has been introduced where each of the three
clusters can vote for multiple fault categories. In most cases,
they vote for one fault category; sometimes they can also vote
for two or three categories because they might be closer to
a corner where three faulty regions join together. In the final
step, a distance matrix has been used for cumulative voting.
Hence, the cluster that is closest has a stronger bearing on
the overall result; the next farthest has a weaker bearing and
the next most distant one has a still weaker bearing on the
final result. Mathematically, the voting weight of any cluster
can be expressed by the following equation.

Wp = S − ||x − µp||2
2 ∗ S

(6)

where S = ∑∣∣∣∣x − µi ||2+
∣∣∣∣ x − µ j ||2 + ||x − µk ||2 and

p ∈ {i, j, k} are the three nearest clusters centres from any
data point x . Finally, the cumulative votes are added up
in a weighted fashion to determine the classification of an
unknown transformer most effectively.

4.5 Training stage

During the training stage, 318 transformers’ gas concentra-
tions out of 376 collected from the utility company have been
used to develop the proposed clustering technique. These
training data points were excluded from the test set. The
fault categories of the training data points are labelled by the
utility experts. The number of individual fault category of the
training samples is shown in Fig. 3.

To create a cluster of points (rows) in a five-dimensional
Euclidean space, the relative percentages of the five gases
have been calculated and put into the individual columns of
a matrix X . The matrix X can be expressed as
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Fig. 2 Workflow of the
proposed model for practical
application
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X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

%H21,1 , %CH41,2 , %C2H41,3 , %C2H61,4 , %C2H21,5
%H22,1 , %CH42,2 , %C2H42,3 , %C2H62,4 , %C2H22,5
. . . . . . . . . . . . . . .
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%H2318,1 , %CH4320,2 , %C2H4320,3 , %C2H6320,4 , %C2H2318,5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

After creating the Euclidean space, 64 five-dimensional clus-
ter centres were created following the LBG algorithm so that
the training data can be partitioned around the nearest clus-
ter centres. After each LBG iteration, each cluster centroid
(initial centre is the mean of X) was split into two until 64
clusters are formed. The centres having zero association with
the training data points (where C j was an empty set) were
removed, and the remaining were used as initial centres in
KMA. To ensure optimum performance, the 34 best cluster
centres have been chosen using KMA. The selection process
includes splitting the centres having large number of data
associations, and removing or combining the centres having
lower numbers of data associations. The association is evalu-
ated by indexing the data points to the centres based on their
distances to them. The iterative process was continued until
each of the clusters become representative of a particular
fault class or multiple classes with different distinguishable
percentages. Moreover, there was no cluster where C j was
exceptionally large set. A summary of the probabilities of
each fault category based on its association with each cluster
centre is shown in Table 4.

The probability matrix of Table 4 shows that the single
clustering technique could wrongly classify an unlabelled
measurement, if it is close to a cluster on the boundary
betweenmultipleVoronoi regions (fault categories). Themis-
classification rate could increase greatly for a measurement
closest to a cluster centre likeµ17 whichVoronoi region com-
prises 67 percentC type faulty data points and 33 percent T 3
type faulty data points. To deal with this interference prob-
lem, the KNN algorithm has been used for the 1st, 2nd and
3rd nearest neighbouring cluster centres detection based on
their distances. Moreover, the cumulative weighted voting,
based on the distances from the centre has been proposed
to identify a fault class of an unknown transformer. For
instance, in case of three neighbours clustering approach,
if the cluster centres µ3, µ2, and µ17 are the 1st, 2nd and
3rd nearest neighbours of a training data point, and their dis-
tance weight factors are 65%, 25% and 10%, respectively,
of total weight then the voting process can be expressed as
follows:

From Table 5, the maximum cumulative vote belongs to
T3 since it has the largest column total. Consequently, the
transformer will be classified as having a T3 type fault.

5 Results and discussion

This research targeted the examples that cannot be classi-
fied easily by the Duval Triangles or come with a conflicting
classification due to the overlapping between different faults.
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Fig. 3 Training samples following the fault categories

Therefore, a subset of 58 transformer measurement samples
out of 376 have been selected as a test set and classified
according to the proposed method. All 58 were excluded
from the training examples. A comparison of fault classifi-
cation based on modified Roger’s Ratios, the IEC ratios and
proposed method on 58 targeted transformer measurements
has been summarized in Table 6.

The accuracy of each method shown in Table 6 has been
calculated by comparing them with expert classifications.
The overall accuracy of the proposed method is 93%. The
method makes occasional errors but it does provide a useful
decision support mechanism for engineers who are trying
to deal with the critical cases. A similar type of experi-
ment with slightly different method has been conducted by
other researchers [12,15,18]. They used their own training
sets (not disclosed in the literature) to train up their clas-
sifier to classify the test sets labelled by the experts in the
power industry. To verify the performance of the proposed
approach, it has been applied on their published test sets. In
[18], researchers applied the rough sets (RS) analysis tech-
nique and artificial neural networks (ANNs) combined with
RS and k-means clustering (KMC) algorithms to determine
transformer fault categories. A comparison of their methods,
different established methods and the proposed method is
shown in Table 7.

The proposedmethodwas also applied on the test samples
available in [12]where each fault has been foundusing a deci-
sion tree (formed from if–else conditions) based on the gas
contrition limits for particular types of fault. They considered
the decision treemethod as a new approach to DGA. Accord-
ing to this method, they found overlapping between different
faults with the same gas limit used in the decision tree. To
solve the overlapping problem, they included additional gas
ratios in the decision tree and named it as Modified New
Approach DGA. The proposed method has been compared
with the decision tree method and different ratio methods to
evaluate its performance. The comparison has been summa-
rized in Table 8.

In [15], the researchers have used different artificial intelli-
gence and machine learning techniques such as ANN, SVM,
ELM, and SaE-ELM to classify the fault category of a trans-
former. They compared the classification of all the four
methods and the decision taken from the majority votes. A
comparison of their methods and the proposed method is
shown in Table 9.

6 Case study and analysis

To provide a deeper understanding, all 34 literature cases
have been used in a case study. The proposed method dif-
fers from the experts’ diagnoses in three cases (Case number
2, 4 and 9), out of 16 shown in Table 8. According to the
experts’ judgements, cases 2, 4 and 9 are D2, D2 and DT
faults but are classified as D1, D1 and T2 respectively, by the
proposed method. Duval Triangle classified the faults as D1,
D1 and DT correspondingly, but the other two conventional
methods, Roger’s ratio and IEC ratio, failed to diagnose these
cases. As the DT fault category has been omitted from the
proposed method due to the insufficient training data points,
it has been classified as a T2 fault. Moreover, gas concen-
trations collected from the utility company predominantly
used Duval Triangles to classify their transformers’ fault
categories which could be a reason for misclassification in
cases 2 and 4, respectively. The proposed method effectively
solved the overlapping problem in 7 cases out of 10 shown
in Table 9. The IEC method could not detect any faults in the
8 cases shown in Table 9. Even the performance of Roger’s
ratio is not satisfactory, but the proposed method accurately
classified all cases except for case number 6. That case is
classified by the ANN, SVM, ELM, and SaE-ELM methods
as a D2 fault. According to the Duval Triangle, the fault cat-
egory of the sample is DT fault, which is a combination of
thermal and dielectric. The proposed method has classified
the case as a T2 type fault. As the data point is close to the
three neighbouring cluster centres, which Voronoi regions
comprise multiple types of faults with closed percentage of
probabilities, it is clear that case 6 has been misclassified.
This problem could be overcome by increasing the num-
ber of clusters with a much larger number of training data
points.

In this research, the number of cluster centres and their
positions are carefully chosen through a continuous iter-
ation process and their performances have been tested
before being applied to an unlabelled measurement. Delib-
erately preserved extra-dimensional information has helped
to accurately classify 93 percent of the cases, which other
conventional establishedmethods could not copewith.More-
over, the proposed method performed well on the published
data as shown in Tables 8, 9, respectively.
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7 Conclusions

A new DGA diagnosis technique has been developed that
is based on a clustering approach combined with a modi-
fied KNN cumulative voting approach that considers inter-
neighbour distances. The experimental results show that it
correctly classifies 93% of the difficult cases where Duval’s
triangle is unable to make a classification. This result is com-
pared with other methods like the Rogers’ Ratios and IEC
method, all of which fail in a significant fraction of cases (See
Tables 7, 8, 9). The focus of this work has been to develop a
method that compliments Duval’s widely adopted triangles
method rather than replacing it. The interaction can be seen
from the workflow diagram shown in Fig. 2. It can be seen
that the proposed method is very suitable for incipient fault
diagnosis in power transformers.

One of the weaknesses of the proposed technique is that it
does not deal well with the mixture of dielectric and thermal
(DT) faults. Most other systems considered also have diffi-
culties differentiatingDT from other fault categories. Further
work needs to be done in this area, particularly building clas-
sifiers with large number of training examples that can deal
with very uncommon faults more effectively.
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