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Abstract: Accurate faults diagnosis in power transformers is important for utilities to schedule maintenance and minimises the
operation cost. Dissolved gas analysis (DGA) is one of the proven and widely accepted tools for incipient fault diagnosis in
power transformers. To improve the accuracy and solve the cases that cannot be classified using Rogers’ Ratios, IEC ratios and
Duval triangles methods, a novel DGA technique based on Parzen window estimation have been presented in this study. The
model uses the concentrations of five combustible hydrocarbon gases: methane, ethane, ethylene, acetylene and hydrogen to
compute the probability of transformers fault categories. Performance of the proposed method has been evaluated against
different conventional techniques and artificial intelligence-based approaches such as support vector machines, artificial neural
networks, rough sets analysis and extreme learning machines for the same set of transformers. A comparison with other soft
computing approaches shows that the proposed method is reliable and effective for incipient fault diagnosis in power
transformers.

1 Introduction
Power transformers are the most expensive and critical components
in power transmission and distribution networks. A catastrophic
failure of a transformer can jeopardise the stability of many power
systems. Therefore, its reliable operation is essential to ensure
continuous power supply and prevent a great financial loss for the
utility companies. According to Dhote and Helonde [1], about 80%
of transformer faults occur from incipient deterioration that could
be identified through predictive maintenance and online monitoring
techniques. Therefore, condition monitoring and early fault
diagnosis techniques are gaining more attention among utilities for
preventing unscheduled outages and minimise their operational
risks.

Owing to continuous operation, faults and overloading, a power
transformer is subjected to thermal, electrical, chemical and
mechanical stresses throughout its operating life. These stresses
may cause decay of insulating oil and release some gases which
become dissolved in the dielectric fluid. The gas concentrations
may be measured using gas chromatography [2] and analysed by
different dissolved gas analysis (DGA) techniques to indicate the
fault afflicting a transformer. The gas concentrations observed in
transformers under incipient fault condition increase as a function
of temperature, and their individual concentration depends on the
type of fault allowing their prevalence to be used as a fault detector
[3]. For instance, hydrogen (H2) and methane (CH4) start to form
under low thermal stress at about 150°C and are an indicator of
partial discharge (PD), while temperatures over 500°C lead to the
formation of acetylene (C2H2) which is an indicator of arcing.
Moreover, the concentration of carbon dioxide, carbon monoxide

and their ratios can be used to assess the condition of paper
insulation as they are produced by the degradation of solid
insulation [4]. As DGA is a widely accepted, proven and non-
invasive incipient faults detection method in transformers, its
popularity increased over time.

To analyse the gas concentrations in transformer insulating oil,
different DGA techniques such as modified Rogers’ ratios, IEC
ratios, Doernenburg, key gas method and Duval triangles have
been used over recent decades [5, 6]. Some of the methods use gas
ratios, while others use specific gas concentrations to indicate the
condition of a transformer. Although the implementation of these
conventional methods is easy, they have shortcomings, leading to
incorrect diagnosis or unresolved diagnosis. According to Singh
and Bandyopadhyay [4], the acceptable dissolved gases
concentration in oil-filled transformers at different operating ages
is shown in Table 1. 

Previous investigations have employed a diverse range of
artificial intelligence (AI) and machine learning (ML) techniques
including artificial neural networks (ANNs) [7], support vector
machines (SVMs) [8], fuzzy logic [9, 10], neuro fuzzy systems
[11], along with the nearest neighbour clustering approach
(NNCA) [12] to overcome the limitations associated with the
established DGA methods. Results presented here are drawn from
a DGA data set describing 376 transformers operated by a Western
Australian utility company. The data set enables quantitative
analysis of the critical cases, where Duval triangles and
conventional ratio methods fail to correctly (or unambiguously)
classify a transformer. The combustible gas concentrations have
been analysed by a novel probabilistic density function based on
the Parzen Window (PW) method [13], which is shown to be more
effective when dealing with the critical cases that cause problems
with established methods. The arrangement of this paper is as
follows: Section 2 describes the motivation for the research.
Section 3 introduces the concept of PW estimation. Section 4
describes the methodology, while Section 5 presents experimental
results measuring the comparative performance of the new method.
Section 6 evaluates and compares the proposed method with other
methods. Section 7 presents a case study and Section 8 concludes
with a summary of the results.

Table 1 Permissible dissolved gases concentration (ppm)
in healthy power transformers [4]
Gas <4 years 4–10 years >10 years
CH4 70 150 300
C2H4 150 200 400
C2H6 50 150 1000
C2H2 30 50 150
H2 150 300 300

 

High Volt., 2018, Vol. 3 Iss. 4, pp. 303-309
This is an open access article published by the IET and CEPRI under the Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/3.0/)

303



2 Motivation for research
DGA is a widespread diagnostic technique that has gained
worldwide acceptance for incipient fault diagnosis in transformers
[14]. As a result of stress during operation (electrical, mechanical
and thermal), the dielectric properties of oil, as well as solid
insulation (paper and pressboard), become degraded over time. The
decomposition of insulating material produces different
combustible and non-combustible fault gases and increases the risk
to transformers during operation. The DGA-based analysis
involves measuring and monitoring the concentration and
production rate of gases to assess the insulation condition of a
transformer and indicate developing faults. To interpret dissolved
gas concentrations, graphical techniques such as Duval triangles or
ratio methods are used. Although relatively easy to implement,
each of these established methods has different advantages and
limitations. Therefore, comparison of the results from applying
different methods on the same sample can lead to contradictions.
Should this occur, there is no proven way to prioritise one method
over another [15]. The accuracy of the IEC ratio is often
compromised due to the incomplete coding (limited classifications)
and strict ratio limits. It is unable to identify faulty samples that fall
outside its defined ratio limits. In addition, the IEC low- and high-
energy discharge categories (D1/D2, respectively) can interfere,
resulting in a misleading classification [16]. Moreover, the
classification from the Rogers’ ratios method is unable to detect all
faults precisely [16]. Its diagnosis is most accurate for the low
thermal (T1) fault [12]. The Doernenburg ratio method can only
provide three types of diagnoses by comparing its different limit
values and cannot distinguish the severity of any thermal
decomposition (The detailed procedure for this method is available
in an IEEE standard [17].). All these ratio methods are empirical
and lack a theoretical basis, so their accuracy is dependent on
concentration thresholds and ratios that may vary from expert to
expert. In some practical cases, the calculated ratios do not fall
within any of the defined fault classes and hence remain
unclassified. The Duval triangles method always provides a fault
diagnosis even for transformers that are known to be healthy. The
classical Duval triangle is unable to accurately detect both PD and
thermal faults [12]. For transformers filled with mineral oil, and if
the fault classification is either a thermal fault or a PD by the
classical triangular method, then triangles 4 and 5 must be used to
offer additional clarification. Unfortunately, triangles 4 and 5 can
subsequently sometimes result in contradictory classifications.
Moreover, all triangles contain an unclassified region.
Consequently, the efficacy of fault classification with these
methods is heavily dependent on an expert's past experience and
ability to interpret their results. To improve the diagnostic
capability of these standard methods, different AI and ML
techniques such as ANNs, SVMs, fuzzy logic and nearest
neighbour classification (NNCA) have been introduced [7–10, 12].
Although they can solve the problem of many unresolved and
wrong diagnoses to a large extent, each has additional limitations.
For instance, an ANN needs to be trained on a large set of
examples to ensure reliable classification. Similarly, in fuzzy logic,
the derivation of effective rules may prove difficult. Similarly, the
wavelet network has high efficiency but low convergence [3].
Finally, in NNCA, detection of cluster centres and partitioning
them into different fault categories are critical but hard problem.

3 Basic concepts of PW estimation
Probability density function (PDF) estimation is prevalent in many
statistical techniques for analysing numerical data. Different PDF
methods are currently available to estimate the density of unknown
measurements. PW is a popular non-parametric method and is used
here to estimate the probability of an unknown transformer fault
class based on the distribution of known transformer measurements
[18, 19]. It is a form of inductive learning that estimates the PDF
from a finite set of examples drawn from the distribution. As it is
non-parametric, it does not need to estimate the values of a large
set of synaptic weights as would be the case with ANNs.

The PW method estimates the common PDF p(x) for an
independent and identically distributed finite observation of any

measurements X. The shape of the density function p(x) is entirely
dependent on the sample data and its accuracy moves toward the
true value with an increased number of observations [19].
Therefore, no assumed functional form is necessary to estimate the
PDF of unknown measurements [13]. According to [20], the
probability that a measurement x belongs to a region R that is a
subset of the domain can be expressed by the equation below:

P = ∫
R

p x dx (1)

If the region ℛ is assumed to be very small, the probability density
p x  within ℛ can be considered constant. Therefore, (1) can be
approximated to the equation below:

P = p x V (2)

where V is the volume of ℛ. If N samples X1, , X2, , X3, , …, XN are
drawn from a distribution in D-dimensional space and each is a
vector Xn = xn, 1, , xn, 2, …, xn, D , then a probability density p x
predicts the number of samples K out of n fall inside the ℛ region
can be estimated by

K ≃ NP (3)

Rearranging (2) and (3), the probability density can be
approximated as

p x ≅ K
nV (4)

If the region ℛ is treated as a hypercube centred on Xn with side
length σ, then its volume will be V = σD. The number of samples
K  belonging to the region ℛ can be calculated through a function

k x  that meets the following conditions [19]:

k x =
1 xi ≤ 0.5 i = 1, 2, …, D
0 otherwise

(5)

where x = x1, , x2, …, xD . Therefore, the value of K can be
defined as

K = ∑
n = 1

N
k

x − Xn
σ (6)

The new expression for probability density at any sample point x
can be calculated by substituting the value of K from (6) into (4),
which is shown in the equation below:

p x = 1
NσD ∑

n = 1

N
k

x − Xn
σ (7)

Equation (7) is considered to be the basic formulation of PW
estimation, where k x  is a statistical kernel [21] or window
function. Different kernels such as rectangular (5) or Gaussian
kernels can be applied to define a window function. As the
Gaussian function is smooth, in this research, a multivariate
Gaussian kernel is commonly applied to obtain a smoother density
model. Moreover, in a special form of radially symmetrical
Gaussian, the function can be completely specified by using a
variance parameter only [21]. Thus, the PW density function using
a Gaussian kernel function with a common covariance Σ can be
written as

p x = 1
N 2π D × Σ

∑
n = 1

N
exp − x − Xn

TΣ−1 x − Xn
2 (8)

where Σ is a kernel covariance matrix (multivariate standard
deviation) that decides the shape of the estimated PDF [13]. From
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(8), it can be seen that the estimated density function is obtained by
summing the kernels of representative samples drawn from the set
of measurements. The smoothness of the function increases with
the increased value of Σ and gradually starts to lose information
[20]. However, if the value is too small, the model becomes very
sensitive to sample noise. The optimal value of Σ can be estimated
by analysing the training set discussed in a later section. After
estimating the optimal value of Σ, the probability density of any
test measurement can be calculated using (8).

4 Methodology
This section focuses on development of an effective PDF based on
a limited number of transformer measurements to identify the fault
category of a previously unseen transformer. (In this sense, it is like
training an ANN from a training set and then testing with a second
disjoint set of measurements). Different sections of the
methodology such as data collection, pre-processing, density
function estimation, training and feature selection have been
discussed below.

4.1 Data processing and normalisation

As a basis for the experiment, concentrations of five combustible
gases H2, CH4, ethylene (C2H4), ethane (C2H6) and C2H2 were
measured for 376 power transformers. The concentrations of gases
were measured in parts per million (ppm). The concentrations were
collected by sampling the oil of each transformer's main tank and
analysing it in a laboratory. In the case of an abrupt change in
concentration between successive scheduled measurements, the
sample was recollected and then re-examined in multiple
laboratories to verify the actual concentration. To differentiate the
faulty transformers and classify their fault categories, gas
concentrations were analysed using conventional approaches such
as Duval triangles, Doernenburg, Rogers’ ratios and IEC ratio
methods. Moreover, sophisticated software and expert judgement
were also used to determine the most likely fault category of each
transformer. In some cases, a faulty transformer had already been
removed from service to investigate the ultimate fault category. In
most cases, the findings exactly match the expert classification.
Therefore, in this work, it is assumed that the final fault category of
transformers decided from the combination of expert judgement
and established methods are reliable and accurate. For the proposed
PDF estimation technique, the amount of total combustible gases
(TCGs) for each transformer has been calculated by adding the five
combustible gases as in the equation below:

TCG = H2 + CH4 + C2H4 + C2H6 + C2H2 (9)

After calculating the TCG, individual percentages of the
combustible gases were computed and used as an input to the
proposed PW method. The percentage calculation procedure and
the seven-targeted fault classification based on the PW method are
summarised in Table 2. 

Finally, the 376 collected measurements were divided into
disjoint training (85%) and testing (15%) subsets. The testing
subset has been purposely selected to include the critical cases that
could not be classified unambiguously with conventional methods

and cause a conflicting classification by using Duval triangles
methods. Therefore, measurements from 318 transformers were
used as a training set for the proposed model, whereas the
remaining 58 transformer measurements were used to evaluate its
performance.

4.2 Density function estimation

In this research, a non-parametric-based PW technique has been
applied to estimate the density function. Each of the concentrations
shown in Table 2 has been concatenated to form one point in a
five-dimensional (5D) space. For PDF estimation, a Gaussian
kernel function has been centred on each of the 318-point training
set. The individual kernels are added together by determining a
common width that is known as the smoothing parameter to
estimate the probability density of each measurement. A
mathematical expression of PDF is shown in (8).

The challenging task when applying the proposed method is to
precisely estimate the value of the covariance matrix Σ  for 5D
data providing a smoothing factor. The smoothing parameter is
very important as the shape of PDF depends on it. Therefore, it has
a great influence on the measured performance. Although a larger
value of Σ will make the estimated PDF curve smoother, the
estimated curve will also start to lose finer details. However, a
smaller value of Σ may lead to false spikes in PDF curve
depending on the specific distribution of the training points and
thus becomes prone to noise. The optimal value of Σ depends on
the size of the training measurement set and the amount of
superimposed noise [18]. Probability distributions of H2 are shown
in Fig. 1, where the y-axis represents probability p x . 

From Fig. 1, it is obvious that the probability distribution of H2
becomes smoother with the increased value of sigma (covariance).
To estimate the optimal value for Σ, different methods such as
Silverman's rule of thumb [22] or a leave-one-out estimator [18]
can be used. Hu in [19] chose the optimal value of covariance Σ
from a/ n , where a is a constant and n is the sample size. These
methods proved not to be effective on the proposed higher-
dimensional method. Therefore, the value of Σ has been estimated
by search increments of a multiplicative factor (E) with a step size
0.001 in the range 0.001–1.0. With increased values of E, the
accuracy of the model increased up to a certain level. When the
value of E increased still further, the accuracy started to drop. As a
result, the value at which maximum accuracy was found is
considered as a near-optimal point for this experiment and which
was 0.25.

However, to calculate the inverse of Σ following (8), in some
fault classes, the covariance matrix becomes singular due to the
limited number of features (some gases are absent). This means it
is impossible to calculate the matrix inverse as needed by (8). To
overcome this singularity problem, a regularisation technique [23]
was applied. In this approach, a matrix with very small diagonal
values (having the same dimensions as Σ) was added to the
covariance matrix. The diagonal values were controlled by a small
multiplicative factor λ. The equation of covariance calculation for
the proposed 5D case can be expressed by the equation below:

Σ = EΣS + λI (10)

Table 2 Input and targeted output of the proposed method [12]
Input Targeted fault category
1. %H2 = H2

TCG × 100
2. %CH4 = CH4

TCG × 100
3. %C2H4 = C2H4

TCG × 100
4. %C2H6 = C2H6

TCG × 100
5. %C2H2 = C2H2

TCG × 100

1. PD
2. discharge of low energy (D1)
3. discharge of high energy (D2)
4. thermal fault, t < 150°C (S)
5. thermal fault, 150°C < t < 300°C (O)
6. thermal fault, 300°C < t < 700°C (C)
7. thermal fault, t > 700°C (T3)
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where ΣS is the covariance of the training samples, λ is a constant
and I is an identity matrix having the same dimensions of the
samples.

4.3 Training and feature extraction

The model was trained using the percentages of combustible gas
concentrations from 318 transformers. The fault classifications of
the transformers are labelled by the utility experts through a
combination of different established methods, software analysis
and their professional experience. The training sample based on
fault categories is shown in Fig. 2, where the x-axis represents fault
categories. 

It can be seen from Fig. 2 that the utility experts have classified
their transformers into seven fault categories. These categories
have been used to form groups, where each group contains a
certain number of faulty transformers. For instance, fault group C
is formed from 27 faulty transformers. Following the proposed
method, the probability density of each transformer in each group
has been calculated for different values of E and λ to get an
estimation of their optimal values. Transformers having the highest
probability in a particular faulty group will be classified by the
fault category of those transformers. From experiments, it has been
found that with a small value of E = 0.01, the classification of the
training data points exactly match with the expert's opinion but
performance on the test set is unsatisfactory. The maximum
accuracy (94.82%) of the model was found at E = 0.25. If the
value of E is further increased, the accuracy again starts to drop.
Bearing in mind that the proposed method specialises in cases,
where the existing methods fail a workflow for combining the
approach with the existing Duval triangles method has been shown
in Fig. 3. This allows each of these methods to be used on the test
measurements where they are most effective. 

5 Results and discussion
To test the efficacy of the proposed PW method, the percentage of
combustible gas concentrations from transformers have been
analysed to generate a classification into one of seven fault
categories as listed in Table 2. In each case, a domain expert has
also classified the transformer using the same fault labels. In this
work, critical cases have been chosen whose classification is
ambiguous when using conventional ratio methods or the low-
dimensional Duval triangles graphical approach. Therefore, a
subset of 58 transformer measurements from 376 was selected as a
test set, was excluded from the training phase, and subsequently
classified using the PWs method. This allowed the proposed
method's performance to be compared with the IEC ratios,
modified Roger's ratios and previous work using the NNCA [12].
Test results have been summarised in Table 3. 

The accuracy of the proposed method shown in Table 3 is
higher than NNCA when compared with expert decisions
(However, given the small test set, it is unclear whether this
improvement is statistically significant.). The overall performance
of this method is 95% accurate, which is much higher than the
conventional ratio methods. In three cases, the method wrongly
diagnoses the fault category of transformers but it can act as a
decision-support mechanism for engineers responsible for
assessing these critical cases. Moreover, this new approach shows
probable advantages over earlier NNCA methods. In NNCA,
which is a combination of the k-means algorithm (KMA), k-nearest
neighbour algorithm and Linde–Buzo–Gray (LBG), determination
of actual centre locations is critical. As KMA only converges to
local minima, different positions of initial cluster centres lead to
different final clusterings [24]. To overcome this problem partially,
a hybrid approach was developed that combined Lloyd's and LBG
algorithms with conventional KMA [25]. However, there is no

Fig. 1  Probability distribution of H2
 

Fig. 2  Training samples following the fault categories [12]
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guarantee that data will be optimally assigned to the various
clusters. The advantages of the PW method are as follows:

i. Information on the cluster centres is not necessary.
ii. It can be used without knowledge of the probability

distribution of a training set.
iii. No assumptions are required to classify a faulty class of

transformers.
iv. The complexity and correlation of input random variables do

not affect the performance of the proposed algorithm.

6 Evaluation and comparison with other methods
To better evaluate the performance of the proposed method, it has
also been applied to the test sets generated by other researchers
[16, 26, 27]. The authors of these papers have done a similar type
of experiment but have focused on different approaches to identify
the fault category of transformers. They have also trained their
classifiers using training data, labelled by the utility experts. In
[16], researchers diagnosed the category of a faulty transformer
using a decision tree based on the concentration of combustible key

gas limits and named it as a new approach DGA. They found that
different faults having the same gas limit overlapped and were
inseparable. To deal with the overlapping problem, an additional
gas ratio was included into the decision mechanism and renamed it
as the modified new approach DGA. The performance of the
proposed PW method has been compared with the decision tree
approach [16] and conventional ratio methods in Table 4. 

From Table 4, it can be seen that the correct diagnosis rate of
the proposed PW method is higher than those of the IEC and
Roger's ratios methods. Moreover, the proposed method has
accurately classified all the cases, except case number 6.

The proposed method was also evaluated on other test sets
disclosed in the literature [26], where fault categories were
determined by applying a rough sets (RSs) analysis technique and
where ANNs were combined with k-means clustering (KMC)
algorithms and RS, respectively. The comparative performance of
these methods and other established methods versus the proposed
method are summarised in Table 5. 

Application of this linear approach to classify a transformer's
fault category may not be effective for critical cases. To deal with
the non-linear problem, different AI and ML techniques such as
ANNs, a SVM, an extreme learning machine (ELM) and self-

Fig. 3  Workflow of the proposed model for practical application
 

Table 3 Comparison of the proposed method with IEC ratios, Rogers’ ratios and the NNCA methods [12]
Test methods Unresolved diagnosis Wrong diagnosis Accuracy, %
IEC ratio 27 8 74.19
Roger's ratios 21 9 75.67
NNCA — 4 93.10
proposed method — 3 94.82
 

Table 4 Comparison between decision tree, ratio and the proposed method (shown in bold) [12, 16]
Case
number

H2 CH4 C2H4 C2H6 C2H2 Diagnosis result
Actual
diagnosis

New approach
DGA

Modified new
approach DGA

Roger's
ratios

IEC ratio Proposed
method

1 117 17 3 1 1 PD PD, D1 PD — — PD
2 32,930 2397 0 157 0 PD PD, D1 PD PD PD PD
3 78 20 13 11 28 D1 D1, D2 D1 — D1 D1
4 1230 163 233 27 962 D1 D1, D2 D1 D2 D1 D1
5 8200 3790 4620 250 277 D2 D2, T1 D2 — — D2
6 130 140 120 2 0 T1 D2, T1 T1 T3 T3 T3
7 78 66 2.6 283 0 T1 D2, T1 T1 normal PD T1
8 30.4 117 138 44.2 0.1 T2 T2, T3 T2 T3 T2 T2
9 27 90 63 42 0.2 T2 T1, T2 T1 T2 T2 T2
10 1100 1600 2010 221 26 T3 T2, T3 T3 T3 T3 T3
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adaptive evolutionary ELM (SaE-ELM) were proposed in [27–29].
The authors classified each test transformer using these four
methods and a final decision is taken following the majority of the
votes. A comparison of the performance of these assorted AI and
ML techniques versus the PW probability density estimation
method is shown in Table 6. 

7 Case study
To provide a better insight, all the cases in the literature have been
used in a case study. Except for case number 6, the proposed
method has solved all the overlapping problems shown in Table 4.
Case number 6 differs from the expert classification (T1), has been
classified as T3. The method also has successfully classified 12
cases out of 16 as shown in Table 5. The wrongly classified cases
are 2, 4, 7 and 9. The expert has classified those problems as D2,
D2, D1 and Thermal and dielectric (DT), whereas the proposed
method classifies them as D1, D1, S and T2, respectively. The
Duval triangle method classified the faults as D1, D1, D2 and T3,
respectively, but the other two established methods (Roger's ratio
and IEC) failed to determine these cases as their ratios fell outside
the defined limits. As the utility company that owns these assets
predominantly use Duval triangles to classify their transformers
faults, this could explain the misclassification of cases 2, 4 and 7.
The DT fault combines aspects of thermal and dielectric faults and
was, therefore, not included in the targeted categories of this
research. Therefore, it has been classified as a T2 type thermal
fault. A similar problem also arises in case number 6 as shown in
Table 6. This case is classified by the SVM, ANN, ELM and SaE-
ELM methods as suffering a D2 fault. Similarly, for the cases in
Table 6, the IEC method did not detect any fault and the
performance of Roger's ratio was also unsatisfactory. The failure of
the proposed method could possibly be overcome by increasing the

number of random samples drawn from the larger number of
training measurements.

In this research, the optimal value of covariance for 5D data
sets is carefully chosen through a continuously supervised iterative
process. All the 5D gas concentration information has been
deliberately preserved throughout the process, aiming at a better
classification than with the Duval triangles. In Duval's approach,
gas concentrations are mapped into 2D spaces prior to classifying
each transformer's fault category. Deliberately preserved these
extra dimensions has probably helped to accurately classify 95% of
the cases. Moreover, the performance of this method is satisfactory
on the published data which has been shown in Tables 3–5.

8 Conclusions
A new procedure for DGA based on PDF estimation by using the
PW method is introduced in this paper. The method is specialised
to deal with the difficult cases, where Duval's triangle fails to
provide a definitive fault classification. To develop a more reliable
and effective fault classifier, five key gas concentrations from 376
power transformers were normalised into percentage form. The
new approach is straight forward and easy to apply without the
knowledge of cluster centres. The comparative results shown in
Tables 4–6 demonstrate that the performance of the PW method is
much better than the conventional ratio-based diagnostic strategies
and comparable with different AIs and ML techniques such as the
ANN, SVM, ELM, SaE-ELM and NNCA. The experimental
results in Table 3 show that it correctly classifies 94.8% of these
difficult cases, where Duval's triangle provides an ambiguous
classification. As the accuracy of this method is dependent on the
number of training samples, the accuracy could be improved and
the repair cost for a transformer may be reduced by having a larger
number of training samples.

Table 5 Fault diagnosis comparison between established methods and adapted methods [12, 26]
Case
number

H2 CH4 C2H4 C2H6 C2H2 Diagnosis result
Expert
diagnosis

Duval
triangle

RS RS–ANN KMC–RS–
ANN

Roger's
ratios

IEC
ratio

Proposed
method

1 60 40 110 10 70 D2 D2 D2 D2 D2 D2 D2 D2
2 31 7 5 19 67 D2 D1 — D2 D2 — — D1
3 293 50 15 13 120 D2 D2 D2 D2 D2 D2 D1 D2
4 57 7 4.5 19 71 D2 D1 — D2 D2 — — D1
5 467 148 266 13 511 D2 D2 D2 DT D2 D2 D1 D2
6 160 90 17 27 58 D1 D1 D1 D1 D1 — — D1
7 402 81 27 39 25 D1 D2 D1 D1 D1 — — S
8 4 79 312 112 0 T2 T1 — T2 DT T2 T2 T2
9 180 180 4 74 3 DT T3 DT DT DT — — T2
10 1300 740 2000 260 71 T3 T3 T3 T3 T3 — — T3
11 42 97 600 157 0 T3 T3 normal normal normal T2 T2 T2
12 44 52 119 15 1 T3 T3 T3 T3 T3 T3 T3 T3
13 42 79 152 31 1 T3 T3 T3 T3 T3 T3 T3 T3
14 164 244 497 103 8 T3 T3 T3 T3 T3 T3 T3 T3
15 22 51 57 42 0 T2 T2 T2 T2 T2 T2 T2 T2
16 679 4992 3671 1823 0 T2 T1 T2 T2 T2 T2 T2 T2

 

Table 6 Comparison of different adapted technique and proposed methods [12, 27]
Case number H2 CH4 C2H4 C2H6 C2H2 Diagnosis result

ANN SVM ELM SaE-ELM Duval triangle Roger's ratios IEC ratio Proposed method
1 103 5.8 7.3 5 0.7 T1 T3 T1 T1 S — — T1
2 416 21 43.1 10.5 1 T1 T3 T1 T3 T3 — — T2
3 59 53 60.3 17.7 0.8 T2 T2 T2 T2 C — — T2
4 10.5 4.8 4.8 5 2.2 D1 D1 D1 D1 DT — — D1
5 137 97 29 12 1.5 T2 T2 T2 T2 C Low-energy density

arcing (LEDA)/PD
— T2

6 89 73 6.8 6 5 D2 D2 D2 D2 DT — — T2
7 240 157 127 98 0.8 T2 T2 T2 T2 C LEDA/PD — T2
8 116 104 51 36 0 T2 T2 T2 T2 C LEDA/PD — T2
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