2003 International Symposium on Advanced Intelligent Systems
September 25-28, 2003, Jeju, Korea

A Fuzzy-Neural Network Based Human-Machine
Interface for Voice Controlled Robots Trained by a
Particle Swarm Optimization

Keigo Watanabe*, Amitava Chatterjee!, Koliya Pulasinghe*, Kiyotaka Izumi* and Kazuo Kiguchi*
*Department of Advanced Systems Control Engineering, Graduate School of Science and Engineering,
Saga Univeristy, | Honjomachi, Saga 840-8502, Japan
E-mail: {watanabe, izumi, kiguchi}@saga-u.ac.jp
tElectrical Engineering Department, Jadavpur University, Kolkata - 700 032, India
E-mail: cha_ami@yahoo.co.in

Abstract— Particle swarm optimization (PSO) is employed to
train fuzzy-neural networks (FNN), which can be employed as an
important building block in real life robot systems, controlled by
voice-based commands. The FNN is also trained to capture the
user spoken directive in the context of the present performance
of the robot system. The system has been successfully employed
in a real life situation for navigation of a mobile robot.

I. INTRODUCTION

In the last ten years or so, many research efforts have
been directed towards development and exploration of particle
swarm optimization (PSO) technique which is based on the
social metaphor of bird flocking or fish schooling [1}-[3].
One of the main advantages of PSO, which has endeared
itself to the research community is that it is comparatively
simple in operation and easier to understand compared to other
evolutionary computations presently available, e.g., genetic
algorithm (GA), evolutionary programming, genetic program-
ming, etc.

The early works on PSO have shown the employment of the
algorithm for a number of benchmark problems with a variety
of dimensions. Most of these experimentations indicated that
PSO can be very useful in certain problem domains to arrive
at a fast solution [4]. To overcome getting stuck in local
minima, different improved variations of PSO have been also
reported which additionally employ static and varying inertia
weights and constriction factor [2]. PSO has also recently
evolved as a viable alternative to tune fuzzy and neuro-fuzzy
systems [5]. However one of the main question that still
remains unanswered is that can PSO be effectively applied
in developing a real world system? This question inspired us
to undertake the present work.

This paper describes the effective utilization of PSO to train
a Takagi-Sugeno (TS)-type fuzzy-neural network (FNN) as an
important building block of voice-controlled robot systems.
Development of socially responsible, mature robots guided by
spoken language commands [7] can be very useful for nursing
and aiding the elderly people, for physically handicapped peo-
ple, for people struck with paralyses and even as companion
for children. The effectiveness of the proposed PSO-trained

FNN for voice-controlled robot systems is aptly demonstrated
by applying it for navigation of a wheeled mobile robot.

II. THE PARTICLE SWARM OPTIMIZATION

PSO always initializes a pool of particles with random
positions and velocities in a multidimensional space. In each
iteration k, PSO calculates the fitness function f for each po-
tential solution, by utilizing the current positional coordinates
of the jth particle ; in /N-dimension. If the value of the
fitness function, f, is not found satisfactory, then the position
x; and velocity v; of the jth particle is updated according
to position and velocity update relations. The new velocity of
the jth particle in nth dimension, for the (k + 1)th iteration, is
calculated as an additive influence of three major components,
1) component I: the current velocity (at kth iteration) of the
Jjth particle in nth dimension (denoted by v;), ii) component
II: the difference between the nth dimension component of the
best position obtained by the jth particle, until now (denoted
by pjn) and the current position (at the kth iteration) of the jth
particle in nth dimension and iii) component //I: the difference
between the nth dimension component of the best position
obtained by any particle in the topological neighborhood of
the jth particle, until now (denoted by py») and the current
position (at the kth iteration) of the jth particle in nth
dimension. The influence of each of the components II and
III is stochastically weighted and added to component I to
obtain the updated velocity. This velocity update relation can
be given as:

vin(k+1) = vn(k) + @1(pyn(k) = zn(k))

+‘p2(pgn(k)_l'jn(k)) QY]

@1 and po are two uniformly distributed random positive
numbers, used to provide the stochastic weighting, and they
are restricted by the maximum value of pmax. Usnally pmax
is chosen between 1.6 and 2.0. To prevent any unwanted
exploration of a particle along a given dimension, its velocity
in that dimension is restricted by its maximum permissible
value (7', nax)- This option is exercised to keep the random
search of the potential solutions, in quest of a better fitness,

411

Task Task
ificati T Task (
@ Wenitication dentifiction |- | %
@G User Netvork 15 Tkl g(“zlnuul e
Unierance z Voice-Contmiled
s~/ 2\ vl H Robot
N Task V Contro) System
Performance 5 Sigal
Evauation |-
Eyuanon Nework, |- Task N
T Current Crisp Values of Tasks

Fig. 1. The architecture of the proposed voice-controlled robot systems.

within control. Then the new position of the jth particle in
nth dimension is calculated as:

zin(k+ 1) = zjn(k) +vjn(k + 1) 3}

To overcome too aggressive or negative search situation,
various researchers have recently proposed improved velocity
update rules with dynamic inertia weights or employing con-
striction coefficients. Velocity update relations with dynamic
inertia weights W can be given as:

Uin(k +1) = W(k+Dvjn(k) + 01(pjn(k) — T, (K))
+2(pgn (k) — zjn(k)). 3

As opposed to the proposal of incorporating inertia weights
which only exercise its influence over component I of the
velocity update relation in (1), constriction coefficients are
employed to exercise wider control over each of the three
major components of the velocity update relation in (1), in
an effort to prevent explosion of the system. The proposed
velocity update relation can be given as:

Uin(k+1) = x(jn(k) + @1(Pjn(k) — z;n(k))
+‘P2(pgn (k) - z]n(k») C))

It has been argued that there is no requirement of restricting
velocity in any dimension for PSO employing constriction
coefficient. The constriction coefficient x makes this require-
ment redundant. However it has also been pointed out that
employing constriction coefficient with a liberal v, max equal
to the dynamic range of the variable may be quite useful [4].

ITII. Fuzzy NEURAL NETWORK IN VOICE-CONTROLLED
ROBOT SYSTEMS

The proposed voice-controlled robot system is shown in
form of a schematic diagram in Fig. 1. The system is composed
of four major building blocks: a speech recognizer (SR), a
task identification network (TIN), a performance evaluation
network (PEN) and the robot system under consideration. The
input to the system appears in form of spoken commands from
a human. The entire system is designed so that the linguistic
nature of spoken directive of the human user is translated in
form of a quantified and crisp desired action for the robot
system. To start with, each and every running utterance from
a user is stripped off by a SR module to create a pseudo
sentence. Creating a pseudo sentence from a user utterance
implies that the in-vocabulary (IV) words are segregated from
out-of-vocabulary (OOV) words. For example, if a user utters
“Robot, can you move backward very slow”, then the OOV
words Robot, can and you are stripped off to create the pseudo
sentence “move backward very slow” comprising of IV words.

This pseudo sentence actually consists of the meaningful
semantic action along with its linguistic adjective for the robot
to perform its action. Spotting of proper [V words in a running
utterance is achieved by training a left-to-right category of
Hidden Markov Models (HMMs) [6]. The construction of this
pseudo sentence is achieved by using the HMM Toolkit (HTK)
distributed as a freeware in the web by Speech Vision and
Robotics Group of the Engineering Department, Cambridge
University. This speech recognizer employs phoneme-based
recognition of IV words where the phonemes of each IV
word are designed as tri-state left-to-right HMM models. The
strength of a keyword recognizing module depends on how
intelligently the IV words can be recognized and it requires
efficient training of the HMM based speech recognizer. Special
attention has been provided to identify similar actions with
synonyms. Initially HMMs are trained so that they can identify
isolated words and later they are added together to build the
database for the SR.

Once the pseudo sentence is constructed, it comprises of
two parts: each definite task/action along with the evalua-
tion of performing that task. For example, in the pseudo
sentence “move backward very slow”, the task/action part
is “move backward” and the evaluation of performance is
“very slow”. The selection of the task part comprises of the
qualitative nature of the job and performance evaluation part
is executed to determine the quantitative, crisp output signal
to be generated by the network for the robot system, for that
given task as commanded by the user. For selection of the
specific action, the pseudo sentence is fed to a single layer
perceptron based artificial neural network (ANN). Here each
output node characterizes the presence of a specific IV word
in the pseudo sentence by generating a high output. Each
output node employs a hard limiting characteristic function
and the ANN is overtrained to specifically identify the set of
IV words. For a set of M IV words with P distinct tasks the
ANN employs M input nodes and P output nodes. Normally
P < M to take care of different words with similar tasks i.e.
synonyms in user utterance.

Once the task identification ANN identifies the exact lin-
guistic nature of the task assigned, it becomes very important
to determine the quantitative degree of severity with which
the task has to be performed. This very important part of
the total system is implemented with the help of the PEN.
This PEN is implemented with the TS-type FNN which
is trained with the help of PSO. This FNN-based PEN is
employed to acquire fuzzy linguistic information from the
domain expert to train the architecture so that it can produce
precise, quantitative control signal for the robot system as an
output, based on the user command. The FNN-based PEN
utilizes both the linguistic task identification and performance
evaluation clauses in the pseudo sentence as its one input. For
example in the pseudo sentence “move backward very slow”,
the linguistic task identification clause “move backward”
is associated with a fuzzy predicate (FP) symbolizing the
performance evaluation clause “very slow”. Each linguistic
task identification input is associated with an FP which is

412

Command
e

Current
Value of
Task N

2

5 6
Consequence

Antecedent
Fig. 2. The FNN employed as the performance evaluation network.

characterized as a singleton. Each FP belongs to a global
FP database for all actions. One sample FP database can be
{very slow, slow, carry on, fast, very fast}. The other
input of the FNN corresponds to the current quantitative value
of the tth task selected from TIN. The architecture of the FNN
is shown in Fig. 2.

IV. TRAINING OF THE TS-TYPE FNN EMPLOYING PSO

The PSO training algorithm of the TS-type FNN based PEN
is shown in Fig. 3, where the algorithm has been employed to
train the weights w;, in the defuzzification layer of the FNN
architecture. The PSO problem has been defined as an N-
dimensional problem where N is the total number of output
weights in the FNN-based PEN. Our objective is to train the
output weights of the FNN so that the PEN can produce
desired crisp output control signal according to the pseudo
sentence derived from the spoken directive from the user and
the current state of the robot task. The FNN is trained in batch
mode with a training dataset of I data pairs. The problem
is formulated as a minimization problem where the fitness
function is based on the mean-squared-error (MSE):

I
MSE = % Z(ydi — Yai)®. (%)
i=1

Here y4; is the desired output and y,; is the actual output from
the FNN for the task ¢ in the training phase. yy; is obtained
from a knowledge base, created using the knowledge of the
domain expert for that specific robot system problem domain.

All the training data pairs are created by employing com-
pletely randomly chosen numbers for each input. Then, we
choose a possible size of population S which gives us a
possible set of weight vectors {w; w2 -+ wg}. Each weight
vector w; is a potential particle for the PSO algorithm and
is an R x 1 vector where R is the total number of output
weights in the FNN. Hence w; = [wj1 w;; --- w,r] where
R = PxQ. To start with, all the weights in each weight vector
w; are randomly initialized in a discourse of [wy. . twrgnt]-

In the iteration, numerical values of each component weight
in each possible weight vector are updated according to the

[Initialize S weight vectors W/—E
i
[Evaluale MSE of FNN for the entire dataset with a given w,.}

no
[Increase 7 by 1 untiln =N k

[Update the values of w;, and w,-,,}
]

Increase jby 1

[-

no

_.thart new iteration with j =1

j>S?

yes

Fig. 3. The training of the FNN employing particle swarm optimization.

PSO algorithm. At the end of the kth iteration, the nth
component weight w;j, in the jth particle is updated by

Wk + 1)wjn(k) + 1(pjn(k) — win(k))
+p2(pgn (k) — wjn(k)) ©)
Winlk + 1) = wjn(k) + win(k + 1). €]

In our version of the PSO we have employed a linearly
adaptable inertia weight W which starts with a high value
Whigh and linearly decreases to Wiy, at the end of the
maximum number of iterations, i.e. iterpn,y, if the algorithm
continues till the end without meeting the termination criterion.
Hence inertia weight for the (k + 1)th iteration is given by

Whigh — Wiow \ .
—_— «— (k+1)).
itermax (iterma (k+1)
8

For each dimension we can choose different discourse of W,
ie. Whigh, Wiow!, if we wish so. Similarly the maximum
permissible velocity of each particle, i.e. the maximum per-
missible rate of change of each weight, wy.x, can also be
accordingly chosen independent of each other.

W(k‘f‘l) = Wlow+ (

V. NAVIGATION OF A MOBILE ROBOT

The proposed system is implemented for the navigation
of Khepera, which can be considered as a miniature version
of a robot driven wheelchair. The robot has 2 degrees-of-
freedom with turning and moving facility. Figure 4 shows the
experimental setup. Here the output control signal from the
FNN-based PEN is extracted in form of velocity. Figure 5
shows the MFs chosen for the input variable, current velocity
for the FNN network. The knowledge base obtained from the
domain expert in form of fuzzy MFs, to derive desired velocity
along with the contextual meaning of the spoken directives,
is given in Fig. 6. The desired velocity at each time step is
obtained from this figure and output (current velocity v) sensed
from the Khepera, according to the following relation:

9

The ANN employed for the TIN was trained with randomly
initialized weights in the discourse |—0.5,0.5] and a small

Desired_Velocity = Velocity.Factor x v.

413

: Very Small
S:Small ~

: Medium
H: High

: Very High

10'.0
Current velocity vx10® /8 [m/s]

Fig. 5. Membership functions of current velocity of Khepera.

learning rate of value 0.1. The termination criterion is set at
an error value of 0.01. For the training process of FNN-based
PEN, we have chosen three possible population sizes, 20, 30
and 40. Our objective was to achieve the desired performance
with as small a population size as possible, because in that case
the training process of FNN will undertake less computation
burden. Figure 7 shows the variation of MSE with iterations
for training FNN-based PEN for this case study.

In each case, the potential weights for each particle in the
PSO was initialized in the discourse [0, 1]. The maximum
permissible velocity, i.e. the incremental change in position per
iteration, Wmax, is kept fixed at 0.1 in each dimension. Each
of the inputs of the FNN employs 5 MFs, i.e. 5 MFs for the

Velocity factor

Current velocity vx10°/8 [mv/s])

Fig. 6. The knowledge base of the desired velocity of Khepera.

0.16

012

<
&

Mean square crror MSE

o

50 120

Iterations

100

80

Fig. 7. The Training performance of PSO for Khepera.

414

TABLE [
USER SPOKEN DIRECTIVES AND THE OUTPUT CONTROL SIGNALS OF FNN.

[User directives] Control outputs of the FNN]}

robot, move forward 2.075
can you go very fast 3.065
please turn left No output
T want you move fast 3.634
robot, please turn right { No output
move very slow 2.662
robot, turn right No output
please go fast 3.404
robot, go very fast 4298 §
stop 0

input velocity and 5 singletons for the fuzzy predicates. Hence
there are total 25 possible rules and 25 output weights to be
adapted in the defuzzification layer. The size of the training
dataset was chosen as 10,000 and the termination criterion
was set at MSE = 0.0001. The parameters for the inertia
weight W, i.e. Wy;gn and Wi, are chosen as 0.2 and —0.3
respectively for each dimension, in each of the three possible
cases employing different population sizes. It can be seen that
with 40 particles, the algorithm converged in 132 iterations
but the results are not satisfactory with S = 20 or 30. Hence
the PSO configuration, employed with a population size of 40,
was accepted for the FNN-based PEN and this trained FNN
network was implemented in real life for the navigation. The
user-spoken utterances for which the robot was tested in real
life are given in Table I, which also shows the velocity outputs
produced by the FNN as control signals. The importance of
the contextual meaning in the spoken directive is amply shown
by entries 2 and 9 in Table I (shown by I marks), in which two
different increments in output velocity are, from the previous
velocity, exhibited for the same user utterance.

VI. CONCLUSIONS

The present work has demonstrated the feasibility of em-
ploying particle swarm optimization (PSO) techniques for
efficient training of a fuzzy-neural network (FNN). The PSO
trained FNN has been successfully employed as an important
building block in real life voice-controlled robot systems.

REFERENCES

[1} Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimiza-
tion,” in Proc. 1999 Congr. Evolutionary Computation, IEEE Service
Center, Piscataway, NJ, 1999, pp. 1945-1950.

R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” in Proc. 2000 Congr. Evolution-
ary Computation, San Diego, CA, July 2000, pp. 84-88.

J. Kennedy, “The particle swarm: Social adaptation of knowledge,” in
Proc. 1997 Int. Conf. Evolutionary Computation, Indianapolis, IN, April
1997, pp. 303-308.

M. Clerc and J. Kennedy, “The particle swarm-explosion, stability,
and convergence in a multidimensional complex space,” IEEE Trans.
Evolutionary Computation, vol. 6, no. 1, pp. 58-73, Feb. 2002.

A. Conradie, R. Miikkulainen, and C. Aldrich, “Adaptive control utilis-
ing neural swarming,” in Proc. Genetic and Evolutionary Computation
Conference, New York. USA. 2002.

R. C. Rose and D. B. Paul, “A hidden Markov model based keyword
recognition system,” in Proc. IEEE ICASSP 90, 1990, pp. 129-132.
K. Pulasinghe, K. Watanabe, K. Kiguchi, and K. [zumi, “Modular fuzzy
neuro controller driven by voice commands.” in Proc. ICCAS 2001.
2001, pp. 194-197.

[2]

3]

14]

(51

161

(71

