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Accurate streamflow estimations are essential for planning and decision-making of many development activities related to water
resources. Hydrological modelling is a frequently adopted and a matured technique to simulate streamflow compared to the data
driven models such as artificial neural networks (ANNs). In addition, usage of ANNs is minimum to simulate streamflow in the
context of Sri Lanka. )erefore, this study presents an intercomparison between streamflow estimations from conventional
hydrological modelling and ANN analysis for Seethawaka River Basin located in the upstream part of the Kelani River Basin, Sri
Lanka. )e hydrological model was developed using the Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-
HMS), while the data-driven ANN model was developed in MATLAB. )e rainfall and streamflows’ data for 2003–2010 period
have been used. )e simulations by HEC-HMS were performed by four types of input rainfall data configurations, including
observed rainfall data sets and three satellite-based precipitation products (SbPPs), namely, PERSIANN, PERSIANN-CCS, and
PERSIANN-CDR.)e ANNmodel was trained using three well-known training algorithms, namely, Levenberg–Marquadt (LM),
Bayesian regularization (BR), and scaled conjugate gradient (SCG). Results revealed that the simulated hydrological model based
on observed rainfall outperformed those of based on remotely sensed SbPPs. BR algorithm-based ANN algorithm was found to be
superior among the data-driven models in the context of ANNmodel simulations. However, none of the above developed models
were able to capture several peak discharges recorded in the Seethawaka River. )e results of this study indicate that ANNmodels
can be used to simulate streamflow to an acceptable level, despite presence of intensive spatial and temporal data sets, which are
often required for hydrologic software. Hence, the results of the current study provide valuable feedback for water resources’
planners in the developing region which lack multiple data sets for hydrologic software.

1. Introduction

Streamflow is one of the responses of integrated atmospheric
and topographic processes. Developing the flow hydrograph
using observed streamflow measurements is an important
task. Many methods (velocity-area methods, formed con-
striction methods, and noncontact measurement methods)

are available to measure streamflow rates [1]. However,
continuous streamflow measurements are not always
available in developing nations, mainly due to associated
costs for installment and maintenance of hydrological
networks [2]. In addition, fine resolution spatial data sets
including land use and soil data are not always available in
these regions. )erefore, computational models to estimate
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streamflows are given a significant attention. However,
accurate streamflow estimation is highly important for many
stakeholders including water resources management, hy-
dropower development, and agricultural management [3].

Among many other available computer models used for
simulating rainfall-runoff processes, the Soil and Water
Assessment Tool [4], the Hydrologic Engineering Centre-
Hydrologic Modelling System (HEC-HMS) [5], the Variable
Infiltration Capacity Model [6], the HBV-light model [7],
and the J2000 model [8] are frequently used by hydrological
modellers around the world [9–11]. However, time-series
hydrological models inherit uncertainties in streamflow
estimations due to unavailability of long-term data including
meteorological and streamflow data [12].

Importantly, due to lack of dense rain gauge networks,
especially in the developing regions, researchers have tended
to use remotely sensed satellite-based precipitation products
(SbPPs). )ese SbPPs are attractive since they are freely
available and provide data with temporal consistency in fine
temporal and spatial resolutions appealing in hydrological
applications. Hence, SbPPs can address many shortcomings
faced when measuring precipitation through ground-based
rain gauges. However, the accuracy of SbPPs should be
tested prior to its applications [13, 14].

At the same time, advancements of science and com-
puter technology have aided the development of soft
computing tools, such as artificial neural networks (ANNs),
the adaptive neuro-fuzzy inference system, and support
vector system [15] to simulate the streamflows using the
available data. Among these soft computing tools, it is
witnessed that there is a growing demand and use in ANNs
for multiple applications, including streamflow estimations
[3] and future hydropower generation estimates [16], in
understanding relationships between future climate and
crop yield [17, 18].

Although ANN approach has been adopted in stream-
flow forecasting in various parts of the world [19–21], this
technique has not much given attention for the context of Sri
Lanka other than [22–25].

Acknowledging the needs of examining the capability of
ANNs for streamflow estimations in Sri Lankan catchments,
the present study was carried out in the Seethawaka River
Basin. )e studied river is a major tributary of the Kelani
River Basin, Sri Lanka. )e simulated streamflow from the
HEC-HMS hydrological model and the ANN model was
compared against observed streamflow records in this study.
)e results of this study will be valuable for the planning and
management of water resources in the Seethawaka River
Basin. )e methodology adopted in this study can be rep-
licated in other river basins, which is lacking in temporal and
spatial data.

2. Study Area

)e Seethawaka River Basin is a subbasin of the Kelani River
Basin (Kelani River is one of the most important rivers in Sri
Lanka in the wet zone of the country). It drains a catchment
area of 223 km2 and is about 57 km long.)e locationmap of
Seethawaka River is given in Figure 1. It lies between

latitudes of 6° 50′ and 7° 00′ N and longitudes of 80° 17′ and
80° 30′ E. )e locations of available rainfall and streamflow
gauging stations within the catchment are given in Figure 1.
)e main tributaries of the Seethawaka River are Magal and
Panapura streams.

)e upper part of Seethawaka catchment (Maliboda
region) receives an average annual rainfall of 4000–5000mm
[26]. Moreover, the upper part is covered with dense forests
and rubber plantation. )e downstream catchment of the
river comprises homestead gardens and tea and paddy
cultivation at various ground levels (refer Figure 2(a) and
2(b)). )e soil types of the catchment area are clay with a
loamy nature, which has moderate infiltration rates [27].

)e Seethawaka River has a steep channel slope (on
average of 31m drop for 1 km), which is highly important for
hydropower generation. Due to this reason the Ceylon
Electricity Board is planning to fund for the construction of a
hydropower plant along Seethawaka, which can produce
30MW. At the same time, several mini-hydropower stations
can be found along the Seethawaka River.

3. Methodology

3.1. Data for the Study. )e daily rainfall data from 2003 to
2010 years at Maliboda and Deraniyagala rain gauging
stations were purchased from the Department of Meteo-
rology of Sri Lanka. )e observed rainfall data since 2010 for
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Figure 1: Location of rainfall and streamflow gauging stations in
the Seethawaka River.
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Maliboda rain gauging station are not comprehensive and
they are with many gaps. )erefore, the study has to be
limited to year 2010. In addition to that, daily streamflow
data were obtained from the Irrigation Department of Sri
Lanka. )e Digital Elevation Model (DEM) of the Seetha-
waka River Basin was extracted from the Global Mapper
available in https://www.bluemarblegeo.com/products/
global-mapper.php. )e DEM used for the model devel-
oped was available in 10m× 10m resolution. )e land use
data and soil data were obtained from the Survey Depart-
ment of Sri Lanka and Harmonized World Soil Database,
respectively.

)e precipitation data from Precipitation Estimates from
Remotely Sensed Information using Artificial Neural Net-
works (PERSIANN), PERSIANN Cloud Classification Sys-
tem (PERSIANN-CCS), and PERSIANN-Climate Data
Record (PERSIANN-CDR) were obtained for this study.
PERSIANN data are available from the year 2000 with spatial
and temporal resolutions of 0.25 and 1 hour, respectively. In
addition, PERSIANN-CCS data are available from the year
2003 with spatial resolution and temporal resolutions of 0.04
and 1 hour, respectively. However, PERSIANN-CDR data
sets are available from the year 1983, and therefore, they can
be used for long-term monitoring of changes in climate. )e
spatial and temporal resolutions of these data sets are 0.25
and 1 day, respectively. Detailed information of the afore-
mentioned SbPPs and extraction can be done from https://
chrsdata.eng.uci.edu/. )e readers are encouraged to refer
[28] for detailed information of PERSIANN family of
products.

3.2. Hydrological Modelling of Seethawaka Catchment.
)e HEC-HMS model [29] has a wide range of applications
in different parts of the world including evaluation of the
impact of climate change on hydrology [30], incorporating

low-impact development and best management practices in
hydrological simulations [31], and assessing the impact of
urbanization on flash floods [32]. Many researchers have
used the HEC-HMS model for event-based and long-term
simulations in the Sri Lankan context [33–37].

In this study, the basin model was developed by feeding
the DEM into the Hydrologic Modelling System-Geospatial
Hydrologic Modelling Extension in the Arc-Geographical
Information Systems. )e developed model was applied to
simulate streamflow. A time step equal to a day was used. An
initial warm-up period was provided to equilibrate between
various water storages in the hydrological cycle. Rainfall data
from 2003 onward were selected for this study due to the
unavailability of CCS data before that. )e hydrological
model developed for this study was calibrated in between
2003 to 2006 (4 years) and validated in between 2007 to 2010
(4 years) by comparing with observed streamflow at the
Deraniyagala streamflow gauging station operated by the
Department of Irrigation of Sri Lanka.

)e observed rainfall data were only used for this cali-
bration. Previous studies including [38] have calibrated the
Soil and Water Assessment Tool (SWAT) to simulate
streamflow with observed rain gauge data, while multi-
satellite precipitation data sets were only used to drive the
SWAT model without changing the calibrated parameters.
)ese parameters were obtained through the model cali-
bration carried out by inputs for meteorological forcing
from ground observed rain gauges. )erefore, a similar
technique was used in this study for the calibration. Pre-
cipitation losses, direct runoff transformation, baseflow, and
routing were simulated by Soil and Moisture Accounting
(SMA) model, Clark Unit Hydrograph, recession method,
and Muskingum and lag methods, respectively. )e same set
of parameters used to calibrate the model with input of rain
gauges was used to simulate the models which used input
rainfall data from SbPPs. )is calibration approach enables
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Figure 2: Land use and topography of Seethawaka river. (a) Land use pattern. (b) Digital elevation model.
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to evaluate the differences of SbPPs affecting the reliability of
streamflow simulations.

Upstream catchment of Seethawaka comprises a dense
forest cover. )erefore, canopy losses were also simulated in
conjunction with the SMA model. )e canopy cover values
for specific land use classes were obtained from [39], whereas
values of hydraulic conductivity in soils were obtained from
[40]. )ese values are given in the Table 1.

Flow routing was carried out by Muskingum and lag
methods. It was observed that the upper reaches of See-
thawaka River are steep; therefore, the lag method, which
was recommended by Nandalal and Rathnayake, [36] was
used. In addition, the manual calibration was performed in
this study to satisfy the goodness fit criterion between ob-
served and simulated streamflow values bymaximizing Nash
Sutcliffe Efficiency Coefficient (NSE). )e parameters were
adjusted based on the guidelines provided in [5].

In addition, De Silva et al. [33] have developed the HEC-
HMSmodel to simulate streamflow of the Kelani River Basin
(major river basin), which the Seethawaka River Basin
(subbasin) is of. Moreover, in the same study, De Silva et al.
[33] have reported that the sensitive parameters for
streamflow when using Soil Moisture Accounting Method
(SMA) are percentage imperviousness and tension storage.
Hence, in the present study, the values of percentage im-
perviousness and tension storage were varied to satisfy the
best-fit criterion between observed and simulated
discharges.

)erefore, four hydrological models were simulated for
Seethawaka catchment using observed rainfall, PERSIANN
rainfall, PERSIANN-CCS rainfall, and PERSIANN-CDR
rainfall values. )ese four simulated models were compared
against observed streamflow. Statistical indicators including
coefficient of determination (R2), Nash–Sutcliffe efficiency
(NSE), and percentage error in volume (PEV) were used to
evaluate the accuracy of model simulations.

3.3. Artificial Neural Network Modelling of Seethawaka
Streamflow. As it was stated earlier, ANNs can be used to
develop nonlinear relationships among variables. )erefore,
the following relationship was formulated using ANN
(equation (1)), where the streamflow of Seethawaka River
Basin is a nonlinear function (ϕ) of the receiving rainfall:

Streamflow � ϕ catchment rainfalli( 􏼁. (1)

)e above relationship was modelled in the mathe-
matical computing package, MATLAB. )e neural network
was modelled with one hidden layer in addition to the input
and output layers. )e daily rainfall data for Maliboda and
Deraniyagala were fed to the system as inputs. )e neural
network was trained using the known Deraniyagala
streamflow data. Seventy percent of the time-series data were
used to the training process, while 15% of each was used to
validating and testing processes. )ree commonly used
training algorithms, including Levenberg–Marquardt (LM),
Bayesian regularization (BR), and scaled conjugate gradient
(SCG), were incorporated in the training process of the
developed ANNs. Among the three training algorithms, the

best was selected based on the coefficient of determination
(R2) and mean squared error (MSE). Previous studies, in-
cluding [41–43] and [44], have used R2 and MSE to evaluate
the performance of training algorithms.

3.4. Overall Methodology as a Summary. )e hydrological
model was developed using the Hydrologic Engineering
Centre-Hydrologic Modelling System (HEC-HMS), while
the data-driven ANN model was developed in MATLAB.
)e rainfall and corresponding streamflow data records
between the 2003 to 2010 period were used in the present
study. )e simulations by HEC-HMS were performed by
four types of input rainfall data configurations, including
observed rainfall data sets and three satellite-based precip-
itation products (SbPPs), namely, PERSIANN, PERSIANN-
CCS, and PERSIANN-CDR. Moreover, the ANNmodel was
trained using three well-known training algorithms, namely,
Levenberg–Marquadt (LM), Bayesian regularization (BR),
and scaled conjugate gradient (SCG).

4. Results and Discussion

4.1. Results of Streamflow Estimations from the Hydrological
Model. Figure 3 demonstrates the comparison between the
hydrological modelled streamflow discharges and observed
streamflow discharges. )e rainfall plotted in the secondary
y-axis is average rainfall recorded from different precipi-
tation products. Figure 3(a) presents the hydrograph ob-
tained through forcing the model by observed rainfall,
whereas Figures 3(b)–3(d) present hydrographs obtained
from the model simulated from precipitation input from
PERSIANN, PERSIANN-CCS, and PERSIANN-CDR, re-
spectively. It can be clearly seen that the simulated
streamflow discharges were underpredicted compared to the
observed streamflow discharges. However, the eyeball
analysis shows that the hydrograph presented in Figure 3(a)
has the best simulated streamflow discharges. Nevertheless,
all four hydrographs follow the patterns of observed
streamflow hydrograph.

Table 2 presents the model performance of the hydro-
logical models simulated by different precipitation products.

Table 1: Calibrated parameters in the SMA method.

Parameters Value
Soil (%) 70
Groundwater 1 (%) 45
Groundwater 2 (%) 82
Max infiltration (mm/hr) 3.5
Imperviousness (%) 25
Soil storage (mm) 125
Tension storage (mm) 75
Soil percolation (mm/h) 0.75
Groundwater 1 storage (mm) 100
Groundwater 1 percolation (mm/h) 1
Groundwater 1 coefficient (h) 100
Groundwater 2 storage (mm) 150
Groundwater 2 percolation (mm/h) 1
Groundwater 2 coefficient (h) 1
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)e calculated coefficient of determination (R2) values
clearly show that the model based on observed rainfall gives
better simulation results (R2 is closer to 1).)ree SbPPs were
shown the least possibility in proving the accurate simulated
results. In addition, the NSE values are negative and the PEV
values are higher for these three cases. However, the model
based on the observed rainfall data presents an acceptable R2
with positive NSE values along with lower PEVs (<1) [45].
)erefore, it can be clearly seen that the hydrologic model
based on observed rainfall outperform the models forced by
SbPPs.

)e precipitation is the only difference input to the
hydrological model. Hence, disparities in precipitation are

the major reasons for mismatches between observed and
simulated flows. Precipitation from satellite rainfall data sets
significantly underestimated the observed rainfall, which can
lead to inaccurate performance of streamflow simulations.
Such observation has been witnessed in previous studies
from the PERSIANN precipitation data, which was used in
watersheds of South Korea by [38] and Sri Lanka by [46].

4.2. Streamflow Estimations from ANN Models. Estimated
streamflow against the observed rainfall from the ANN
model under LM, BR, and SCG training algorithms are
plotted in Figure 4. It can be clearly seen that coefficient of
determination values are not the best. However, among
three tested training algorithms, BR algorithm has the best
R2. In addition, BR algorithm-based ANN model has the
lowest MSE (154) compared to others. )erefore, BR al-
gorithm-based ANN can be selected as an acceptable model
for the flow simulation of the Seethawaka River.

4.3. Comparison of Streamflow Simulations. Figure 5 dem-
onstrates the comparison of streamflow in Seethawaka River
for the period between 2003 and 2010. )e blue line rep-
resents the observed streamflow (Observed SF) over the 8
year period, while the dashed lines represent hydrologic
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Figure 3: Simulated streamflow from hydrological modelling with inputs from different precipitation products: (a) for observed rainfall, (b)
for PERSIANN, (c) for PERSIANN-CCS, and (d) for PERSIANN-CDR.

Table 2: Hydrological model performance under different pre-
cipitation data sets.

Precipitation
products

Calibration Validation

R2 NSE PEV
(%) R2 NSE PEV

(%)
Observed rainfall 0.81 0.79 0.56 0.71 0.57 0.01
PERSIANN 0.11 −0.76 45 0.01 −1.4 60
PERSIANN-CCS 0.05 −1.14 52 0.01 −1.45 58
PERSIANN-CDR 0.07 −1.06 57 0.01 −1.45 65
NSE denotes Nash–Sutcliffe efficiency and PEV denotes percentage error in
volume.
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models simulated (HEC-HMS SF) and ANN simulated
(ANN SF) streamflows. It can be clearly seen that the dis-
charge patterns follow a similar pattern consistent with
observed streamflow. However, the HEC-HMS SF and ANN
SF are unable to capture the peak discharge rates (see the red
colour circles). Nevertheless, this observation is notable in
HEC-HMS SF, while ANN SF is somewhat acceptable.
)erefore, in a simulation process, ANN-induced stream-
flow can be potentially used.

4.4. Discussion on the Related Previous Work. Mixed school
of results are found from the previous analyses. Rauf and
Ghumman [47] concluded that the HEC-HMS hydrological
model performs better than the data-driven ANN model in
simulating streamflows. However, Young and Liu [48]
showed that the hybrid model, which includes both HEC-
HMS and ANN produces more accurate results. Loyeh and
Jamnani [49] concluded that the ANN model is better than
the HEC-HMS model in simulating streamflow for catch-
ment in Iran.

In addition, Tramblay et al. [50] have conducted a
comparison of the hydrological model for Morocco using
observed rainfall and obtained precipitation products.
However, they have not used ANN technique for the
comparison. Instead, they have compared the streamflows
generated by GR4J model, which was developed by Perrin
et al. [51]. However, Tramblay et al. [50] have concluded that
TRMMproduct project closest to the observed precipitation,
thus, reproduces monthly dynamics of streamflows in the
catchment.

Similar analysis was carried out many researchers
[52, 53]; however, most of them have not incorporated the
ANN work to their analyses. In addition, some others have
focused on the ANN work to showcase the streamflows with
respect to the satellite-based precipitation products. Nev-
ertheless, a holistic approach, which incorporates observed
rainfall data and satellite precipitation products to both
hydrological modelling and artificial neural network mod-
elling, is limited in the literature. )erefore, the research
presented here is interesting. However, it is difficult to state a
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Figure 4: ANN Predicted and observed streamflow: (a) for LM algorithm, (b) for BR algorithm, and (c) for SCG algorithm.
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Figure 5: Streamflow comparison of Seethawaka River.

6 Applied Computational Intelligence and Soft Computing



better model one over the other in general; therefore, case
specific analyses are recommended.

5. Conclusions

By comparison of streamflow of Seethawaka River Basin
through hydrologic modelling HEC-HMS and data-driven
techniques, ANN was carried out in this study. Hydrological
modelling results revealed that the simulations with input
from observed rainfall produced the best streamflow esti-
mates compared to the streamflows generated from SbPPs.
In addition, results from the ANN analysis reveal that the
BR training algorithm outperformed in simulating the
streamflows as compared to the other tested training al-
gorithms. It was noted that the results from hydrologic
modelling and ANN against observed streamflow showed
that none of the streamflows can make simulated accu-
rately, especially in capturing peak flows. However,
streamflows based on ANN analysis can be accepted for
specific purposes with a certain error. Nevertheless, future
research is needed in fine tuning the acceptability of the
simulation results.
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