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The relationship between the rainfall and minihydropower generation in a catchment is highly nonlinear. Therefore, the pre-
diction of minihydropower generation is complex. However, the prediction is important in optimizing the control of electricity
generation under various environmental conditions. Ongoing climate variabilities have completely changed the minihydropower
generation to some parts of the world, and it is significant. Therefore, this paper presents results from two soft-computing studies
in searching the relationships between rainfall and the generated hydropower. The first study was carried out for a gauged
catchment; however, the second was carried for an ungauged catchment. Results revealed that there is an acceptable correlation in
between the rainfall and hydropower generation for the gauged catchment and a marginal contribution to the

ungauged catchment.

1. Introduction

Renewable energy is generated from natural resources in-
cluding rainwater, wind, sun-light, and ocean tides. Usage of
more renewable resources for power generation has taken
the world’s attention due to the depletion of fossil fuels and
environmental concerns [1, 2]. Despite the fact that a well-
developed hydroelectric potential might not be capable of
meeting the future demand for electricity, minihydropower
has been the center of attraction due to its economic viability
and environmental-friendly operation, mostly for devel-
oping countries [3-7]. Minihydropower has become com-
mon in most of the countries while being highly popular in
Asia, Africa, and South America. Some of the potential
resources for hydropower development are yet to be ex-
plored [6]. However, minihydropower is an easily opera-
tional, mature, and technologically reliable energy source
with over 50-year life cycle. In addition, it is more efficient
than the other sources such as wind and solar energy [8, 9].
Therefore, minihydropower is utilized widely around the
world for power generation. As an example, around 324 MW
are fed to the national grid in Thailand from their

minihydropower stations [10]. However, they still have the
potential to develop more hydropower from nonutilized
resources. Similar cases can be found in many other
countries including Sri Lanka.

However, predicting the available hydropower from
already-developed minihydropower plants is a challenging
task due to various reasons, including climate variabilities
[11]. Nevertheless, the relationship of hydropower genera-
tion with rainfall is highly nonlinear [12]. Therefore, power
predictions are challenging. Minihydropower prediction, if
possible, is important for future planning processes. Proper
planning in the energy sector could save millions of money.

Over the past years, use of soft-computing techniques
has been popular among researchers to predict the power
generation from hydropower systems in the world. Soft-
computing techniques such as Artificial Neural Networks
(ANNs), Data mining (DM), Support vector machines
(SVM), Adaptive Neuro-Fuzzy Interference System
(ANFIS), and Genetic Programming (GP) have widely been
used in power generation prediction models [13-18].
Among these techniques, the ANN is considered to the most
common soft-computing technique used. ANNs are inspired


mailto:upakasanjeewa@gmail.com
https://orcid.org/0000-0002-7341-9078
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9650251

by biological neural networks and designed to create rela-
tionships among different variables [19-21]. Generally,
ANNs do not depend on preassumptions for determining
the nature of the relationship between the input and output
variables, and the model is generated without a prior raw
data transformation [22, 23]. Therefore, ANNs are widely
used for the prediction of future events, and their perfor-
mance has been evaluated in the literature vastly [24, 25].

The literature presents different studies carried out to
predict hydropower generation using ANNs. Cobaner [26]
studied to predict that the hydropower energy potential
using ANN has used a single hidden-layered feed-forward
neural network trained using Levenberg-Marquadt algo-
rithm. This model has been successful in the prediction of
the monthly and annual average hydroelectric energy of an
existing irrigation dam. Miao [27] studied on forecasting of
small hydropower generation using an improved BP neural
network. Particle swarm optimization algorithm was in-
corporated in this analysis. Results show that the method
proposed in this paper is highly accurate based on the
validation through the example.

Several studies have been carried out in Sri Lanka to
investigate the impact of climate variability on the power
generation in minihydropower plants. Perera [28] have
studied on the impact of expected climate change on the
hydropower generation using the Erathna run-of-the-river
hydropower plant. Furthermore, Khaniya [29] studied on
the impact of climate variability on hydropower generation
using the Denawaka Ganga minihydropower plant. How-
ever, they were statistical models to observe the recent trends
in minihydropower due to ongoing climate variabilities. In
addition, Ratnayake [30] has predicted the hydropower
potential of the ungauged river basin in Gin river, Sri Lanka.
Apart from these, no comprehensive model has been built to
predict the hydropower generation of minihydropower
plants using soft-computing techniques.

Therefore, as a country which is highly relying on hy-
dropower, predicting the potential hydropower generation
in the future years is extremely important to balance the
energy demand and the country’s economic model. To the
authors’ knowledge, there is no such prediction model in the
literature for Sri Lanka. Therefore, such a study would pave
the passage to perform proper planning in energy demand in
tuture Sri Lanka. Therefore, highly polluted nonrenewable
energy usage in the country’s coal power and fossil fuel
power can be managed well for a sustainable Sri Lanka. This
would surely contribute highly to the economy of the de-
veloping Sri Lanka.

Hence, this study, as the first study in Sri Lanka, has
focused on using soft-computing techniques to identify the
relationships between hydropower and rainfall using his-
torical rainfall data and power generation to address this
existing research gap. Interestingly, two minihydropower
plants, one with a gauged catchment and the other with an
ungauged catchment, were selected for the analysis. The
relationships between rainfall and the hydropower genera-
tion were derived to both cases, gauged catchment and
ungauged catchment. Acceptable and interesting results
were obtained and presented here.
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2. Denawaka Ganga and Erathna
Minihydropower Plants

Denawaka Ganga and Erathna minihydropower plants are in
Ratnapura district of Sri Lanka. Ratnapura district belongs to
the wet zone of the country, and it has many minihydropower
plants due to its water resources and mountainous geography.
Denawaka Ganga and Erathna minihydropower stations are
owned by the private sector and started their operation in
Feb-2012 and Jan-2011, respectively. The Denawaka Ganga
minihydropower plant receives water from a 172.58 km?
catchment area, as shown in Figure 1. The power plant has a
capacity of 7.2 MW hydroelectric generation. However, the
Erathna catchment (shown in Figure 1) is significantly smaller
compared to the Denawaka Ganga catchment and has only
14.5km”. Nevertheless, it has a capacity of 10 MW hydro-
power. There are no rain gauges inside the Erathna catchment
as it is a conserved area. In contrast, the Denawaka Ganga
catchment has several rain gauges.

3. Neural Network Models for Catchments

As it was stated above, the Denawaka catchment is a gauged
catchment. It has five rain gauges (refer Figure 1). The
historical rainfall data for these five gauges were obtained
from the Meteorology Department of Sri Lanka. Monthly
generated hydropower for the Denawaka Ganga mini-
hydropower (since it’s starting, February-2012) was collected
from the Denawaka Ganga minihydropower plant. Then, the
neural network models were trained to relate the following
nonlinear function (equation (1)).

PowerDenawaka = ¢1 (RFi’ RFH—I’ te RFn)' (1)

Similar to the abovementioned modeling techniques, the
Erathna minihydropower plant was modeled using neural
networks. However, as Perera and Rathnayake [28] sug-
gested, two sets of rain gauges were selected to observe the
relationship between rainfall and the power generation. Set 1
includes Galaboda Estate, Keragala, Pussella S.P., Maliboda,
and Anhetigama Estate rain gauges, whereas the set 2 in-
cludes Laxapana, Maskeliya, Maussakele, and Hapugastenna
Estate rain gauges (please refer Figure 1). As it was already
stated, the Erathna catchment is an ungauged catchment in
Sri Lanka. Set 1 and set 2 rain gauges are to the west and to
the east of the Erathna catchment, respectively. In addition,
the Samanala mountain range, which is highly elevated than
both the Erathna catchment and set 2 rain gauges, is po-
sitioned in between them. Therefore, the relationships were
modeled accordingly and given in equations (2) and (3).
Monthly generated hydropower for the Erathna mini-
hydropower (since it’s starting, January 2011) was collected
from Erathna minihydropower plant.

PowerErathna = ¢2 (RFi’RFi+1> < 'RFn)setl’ (2)

PowerErathna = ¢3 (RFDRFHI’ c 'RFn)setZ' (3)

ANNs model were developed using MATLAB com-
puting environment (version 8.5.0.197613-R2015a) with the
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FIGURE 1: Denawaka Ganga and Erathna catchments.

abovementioned training algorithms. A nonlinear Autore-
gressive network with exogenous inputs (NARX) was used as
the input model to predict hydropower generation [y (t)]
with past values of x(t) and y(t), where different x(t)
parameters (rainfall values) for series of time steps deter-
mines y(t), during ANN training. The ANN was trained
with 60% of randomly selected time steps. In addition, 20%
each of target time steps were used for testing and validation.
Performance of the developed model was determined using
MSE and correlation coefficient (R).

Levenberg-Marquadt (LM), Bayesian Regularization
(BR), and Scaled Conjugate Gradient (SCG) algorithms were
used to train the neural network. However, LM is most
commonly used in climate prediction as the optimization
algorithm. The algorithm is designed to approach second-
order training speed without computing the Hessian matrix.
Nevertheless, Bayesian regularization and Scaled Conjugate
Gradient algorithms are widely used in the ANN archi-
tecture [31, 32]. Detailed descriptions of these algorithms
LM, BR, and SCG can be found in the work of Perera and
Rathnayake [28].

4. Results and Discussion

4.1. Results for the Denawaka Minihydropower Plant.
Table 1 exhibits the coefficient of correlation for the pre-
dicted and actually generated hydropower by the ANN for
Denawaka Ganga minihydropower station power genera-
tion. Results are given here against three algorithms for three
trials. Correlation coeflicients are presented for the three
processes (training, validation, and test) and overall. Results
exhibited that LM algorithm (2™ trial) outperforms the
other algorithms.

Figure 2 presents the selected results (2™ trial of LM
algorithm) from Table 1. The training process shows a well-
accepted correlation coeflicient (R=0.9). The overall

TaBLE 1: Coefficient of correlation for Denawaka Ganga mini-
hydropower plant power generation.

Coeflicient of correlation

Algorithm  Trials o o
Training  Validation  Test All
1 0.84 0.36 0.79 0.71
LM 2 0.91 0.68 0.57 0.78
3 0.01 0.21 063 -0.11
1 0.78 0.71 0.75 -0.11
BR 2 0.76 0.10 0.73 -0.11
3 0.77 0.73 0.74 -0.11
1 0.72 0.64 0.66 0.69
SCG 2 0.46 0.59 0.79 0.51
3 0.84 0.11 0.64 0.68

coeflicient lies around 0.7, and this is an acceptable corre-
lation for nonlinear processes, where it is related to changing
climatic conditions. Nevertheless, the validation correlation
coefficient is around 0.68, which is slightly to the lower side
even though it is positively correlated.

Table 2 showcases the performance of the developed
ANN model for Denawaka Ganga minihydropower gen-
eration. The 2™ trial for LM shows a mean squared error of
1.19 at the 11th epoch. This is an acceptable performance to
the prediction of hydropower generation. Furthermore, the
variations of MSE with the epoch for the three trials for LM
algorithm are shown in Figure 3. They clearly show the
computational rapidness of the results.

4.2. Results for the Erathna Minihydropower Plant. As it was
stated earlier that Erathna is an ungauged small catchment,
however, it produces 10 MW of electricity. The results are
presented here for two sections (power generation with
rainfall of 1 set of rain gauges and power generation with
rainfall of 2 sest of rain gauges). Table 3 presents the cor-
relation coefficient for the actual hydropower generation and
predicted hydropower generation from the rainfalls from set
1. Algorithms LM and BR show a better performance
compared to SCG algorithm. However, the corresponding
MSE are significantly higher for these two cases (refer Ta-
ble 4). They are around 1.03 x 10° and 4.8 x 10, respectively.
The ideal MSE for such an analysis is zero; however, lowered
MSE values are acceptable. However, the obtained MSE
values for Erathna minihydro are in millions. Therefore,
Erathna power generation does not have a good correlation
to the set 1 rainfall data.

As it was stated in the preceding paragraph, the MSE
values for other algorithms and at different trails are given in
Table 4. It is clearly seen that the MSE values are significantly
higher. In addition, ANN programs consume significant
time durations (number of epochs). Therefore, the unsuit-
ability of the ANN to predict Erathna hydropower gener-
ation based on the rainfall to set 1 rain gauges is established.

Similar observations can be seen in Erathna power plant
hydropower prediction compared to rainfall of set 2 rain
gauges. Table 5 shows the correlation coefficient for the
predicted and recorded hydropower generation for set 2 rain
gauges. LM algorithm has shown the best correlation;
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FIGURE 2: ANN results for LM algorithm for Denawaka Ganga minihydropower generation. (a) For training. (b) For validation. (c) For test.

(d) For all.

TaBLE 2: Performance of the developed ANN model- Denawaka Ganga minihydropower station.

Validation performance

Algorithm Trial 1 Trial 2 Trial 3

MSE Number of epochs MSE Number of epochs MSE Number of epochs
LM 1.08 3 1.19 11 1.28 1
BR 0.32 124 0.42 376 0.36 63
SCG 0.32 5 0.51 3 1.14 8

however, epochs in Table 6 have exhibited the unsuitability
of the ANN for prediction of hydropower in the Erathna
minihydropower plant. This conclusion was justified by
Table 6.

The results of the abovementioned studies can be used
at various planning stages. As it was stated in the intro-
duction, the results are beneficial for the energy demand in
the country at future climate scenarios. Planners can
preidentify when to what extent they have to operate the
minihydropower plants while protecting the environment.
When it comes to energy demands, the planner usually
neglects the surrounding environment. This is usually due
to the economic factors (at least, in the developing world).
However, if performed correctly, the future plans can be
drafted as per the climate models and, then, to keep a good
environmental flow in the hydropower stations. It is a very
usual fact that many environmentalists raise their voice
against the minihydropower plants because of the low or no
environmental flow in the downstream channel from the
head raise weir.

This is questionable in most of the minihydropower
plants in Sri Lanka, and the ecological damage at down-
stream of the minihydropower plants are witnessed by the
authors of this research paper. Even though it is not a
minihydropower plant, the Upper Kothmale hydropower
plant is such an example. The world famous St. Clair falls is
no longer the previously seen St. Clair waterfall due to the
hydropower development [33-36]. This is very important in
hydropower development, and ecological aspects should be
well planned. This is to minimize the ecological damage by
the hydropower stations [37-41]. Therefore, the results of
this research can be very useful in the protection of the
ecology downstream of the minihydropower plant.

The prediction model can be handy in feeding the cli-
mate data from various models. Regional climate models
such as ACCESSI [42], CNRM-CM5-CSIRO-CCAM [43],
MPI-ESM-LR [44], and REMO2009 [45, 46] can be used to
obtain the future rainfall to the catchment. These rainfall
values have to be corrected for the biases. Many researchers
accept the linear bias correction. Corrected rainfalls can be
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FIGURE 3: Performance of LM algorithm in achieving results. (a) For trial 1. (b) For trial 2. (c) For trial 3.

TasLE 3: Coeflicient of correlation for Erathna minihydropower plant power generation for set 1 rain gauges.

. Coefficient of correlation
Algorithm Trials

Training Validation Test All

1 0.39 0.78 0.23 0.42

LM 2 0.90 0.85 0.69 0.86
3 0.74 0.68 0.72 0.73

1 0.99 0.68 0.95 0.73

BR 2 0.92 0.81 0.9 0.73
3 0.99 0.66 0.95 0.73

1 0.77 0.90 0.39 0.76

SCG 2 0.77 0.73 0.75 0.76
3 0.71 0.85 0.66 0.73

TaBLE 4: Performance of the developed ANN model- Erathna minihydropower station for set 1 speed rain gauges.

Validation performance

Algorithm Trial 1 Trial 2 Trial 3

MSE Number of epochs MSE Number of epochs MSE Number of epochs
LM 2.42x10° 0 1.03x10° 4 2.48x10° 3
BR 1.43x10* 208 4.8x10° 178 8.9x10° 393

SCG 7.42%x10° 5 1.84 x10° 17 1.19%x10° 38
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TaBLE 5: Coeflicient of correlation for Erathna minihydropower plant power generation for set 2 rain gauges.
. . Coefficient of correlation
Algorithm Trials . L
Training Validation Test All
1 0.82 0.36 0.55 0.72
LM 2 0.76 0.79 0.78 0.77
3 0.96 0.90 0.60 0.88
1 0.99 0.67 0.93 0.88
BR 2 0.96 0.52 0.87 0.88
3 0.96 0.61 0.91 0.88
1 0.71 0.79 0.72 0.72
SCG 2 0.66 0.74 0.77 0.69
3 0.85 0.63 0.75 0.80
TaBLE 6: Performance of the developed ANN model- Erathna minihydropower station for set 2 rain gauges.
Validation performance
Algorithm Trial 1 Trial 2 Trial 3
MSE Number of epochs MSE Number of epochs MSE Number of epochs
LM 2.51x10° 2 1.50 x10° 2 6.72x10° 11
BR 1.36 10" 324 2.72x10° 172 2.51x10° 206
SCG 9.47 x10° 8 1.29x10° 3 2.19x10° 23

easily fed to the saved ANN model to reassess the hydro-
power development predictions. This whole process can be
automatically carried out as an online arrangement. In
addition, the model can be further developed using the real
present rainfall, however, without the physical appearance
but online feeding systems.

5. Conclusions

Artificial neural network results reveal the relationships
between rainfall and the hydropower generation of two
minihydropower plants in Sri Lanka. Gauged catchment
(Denawaka Ganga) shows a significant correlation (the
correlation coefficient is greater than or equal to 0.57 at 1.19 of
MSE and 11 epochs) between the catchment rainfall and the
hydropower generation. Therefore, the prediction model
generates acceptable results at low computational cost and
lowest mean squared errors. Therefore, the accuracy, reli-
ability, and the robustness of the prediction model can be
accepted.

However, an ungauged catchment (Erathna catchment)
does not show a good correlation between the rainfall and
the hydropower generation. Even though the correlation
coefficients are greater than 0.6 (compared to Denawaka
Ganga), the MSEs are significantly higher for Erathna hy-
dropower for both rain gauge sets. MSEs are around 10> or
10° orders. Therefore, the results are not reliable. In addition,
the Erathna minihydropower plant has a small catchment
area, which is inside a conserved area, and thus, it is unable
to place any real rain gauges. However, the surrounding rain
gauges to the Erathna catchment do not support the hy-
dropower generation of the catchment. Therefore, it can be
concluded, herein, that the gauged catchment’s rainfall
supports the prediction of hydropower production. Perera
and Rathnayake [28] have suggested to cluster the rain
gauges around the Erathna catchment into two major

groups, one covering to the Sri Pada mountain range and the
other is the western side of the catchment. The analyses were
carried out to a similar approach here; however, there is no
significant correlation between the rainfall to the hydro-
power generation in the Erathna catchment.

The limitations of rainfall data inside the Erathna
catchment have produced insignificant results. Therefore,
this can be reanalyzed had there been at least single rain
gauge placed inside the catchment. However, it is impos-
sible, as Erathna is a conserved area.

Nevertheless, the conclusions made here can be highly
useful for the energy planners in the country. The climate
models can produce future climate data under different
scenarios of the Representative Concentration Pathway
(RCPs-RCP2.6, RCP4.5, RCP6, and RCP8.5). These future
climate data can be used to recall the developed prediction
ANN model to obtain the future hydropower developments.
Therefore, the Denawaka hydropower plant can be used for
future predictions using various climatic scenarios. How-
ever, the Erathna hydropower plant would not be used for
such a case due to its lowered-quality results.
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