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*is paper presents the development of wind power prediction models for a wind farm in Sri Lanka using an artificial neural
network (ANN), multiple linear regression (MLR), and power regression (PR) techniques. Power generation data over five years
since 2015 were used as the dependent variable in modeling, while the corresponding wind speed and ambient temperature values
were used as independent variables. Variation of these three variables over time was analyzed to identify monthly, seasonal, and
annual patterns. *e monthly patterns are coherent with the seasonal monsoon winds exhibiting little annual variation, in the
absence of extreme meteorological changes during the period of 2015–2020. *e correlation within each pair of variables was also
examined by applying statistical techniques, which are presented in terms of Pearson’s and Spearman’s correlation coefficients.
*e impact of unit increase (or decrease) in the wind speed and ambient temperature around their mean values on the output
power was also quantified. Finally, the accuracy of each model was evaluated by means of the correlation coefficient, root mean
squared error (RMSE), bias, and the Nash number. All the models demonstrated acceptable accuracy with correlation coefficient
and Nash number closer to 1, very low RMSE, and bias closer to 0. Although the ANN-based model is the most accurate due to
advanced features in machine learning, it does not express the generated power output in terms of the independent variables. In
contrast, the regression-based statistical models of MLR and PR are advantageous, providing an insight into modeling the power
generated by the other wind farms in the same region, which are influenced by similar climate conditions.

1. Introduction

According to the Sustainable Development Goals adopted by
the United Nations in 2015 and the Paris Agreement on
Climate Change, the countries are bound to “ensure access
to affordable, reliable, sustainable andmodern energy for all”
by the year 2030. In this connection, it is estimated that
about two-thirds of global energy demand needs to be
fulfilled by renewable energies by the year 2050 in order to
contain the rise of global temperature under 2oC [1]. It is
encouraging to note that more and more countries focus on
clean energy, low carbon, and high energy efficiency with
emphasis on countering harmful effects of climate changes
[2]. Fossil fuel generated energy is also discouraged as it is

known to incite global warming, air pollution, and ozone
depletion. In the context of adopting renewable energies like
bioenergy, tidal, solar, and wind, wind energy has received
wide attention in producing electricity due to its availability,
cost effectiveness, efficiency, and environmental friendliness
[3].

It is known that kinetic energy of the wind is converted
into electricity using wind turbines installed in wind farms,
which is both economical and innocuous to the environment
compared to harmful effects of thermal plants maintained at
unaffordable fuel prices, particularly in low- and middle-
income countries. Using wind-powered electricity in de-
veloping countries is becoming more popular due to their
capacity to bear the maintenance cost and the downward
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trend in wind turbine costs, given an ideal location for a
wind farm assured with strong winds throughout the year.
Continuous progress in wind power generation would en-
able the countries to effectively reduce their dependence on
power generated by other sources like coal, fossil fuel, and
hydropower, the latter of which is interrupted during dry
seasons.

Analyzing the wind power by country, the Global Wind
Energy Council reported that the estimated cumulative
worldwide wind power generation stands at 651GW as at
the end of 2019, which is an increase of 10% compared to
2018 [4]. *e climate think-tank Ember revealed key find-
ings on the status of global electricity production in which
wind and solar generation is reported to have risen by 15% in
2019 accounting for 8% of the world’s electricity [5]. USA,
Russia, China, and India have made remarkable progress in
contributing wind power to their national grids. From a
regional perspective, the Asia Pacific region has an estimated
wind power capacity of 290.6GW, which is about 44% of
total global installations. China and India have led the region
with wind power-generated electricity of 26.2GW and
2.4GW, respectively [6]. As the wind and solar power is
predicted to grow significantly in the years ahead, it is
imperative that South East Asia too has to play a significant
role in boosting its wind power capacity. Sri Lanka has an
estimated 5,600MW of exploitable wind power potential, of
which only about 2.3% has been developed with further 2.3%
in progress [7].

A number of research studies have been carried out to
predict wind power in the short, medium, or long term using
different types of models: physical, data-driven, hybrid, and
time-series models. Wind speed is transformed into wind
power in physical models that predict wind speed based on
equations governing atmospheric motions and weather
features, whereas data-driven models use past wind power,
meteorological data, and numerical weather prediction
measurements to fit a wind power forecasting mapping
function [8]. Further, physical models are more appropriate
for long-term predictions while statistical models are fa-
vored in short-term predictions as their error becomes
cumulative in long-term predictions [8]. Moreover, different
geographical and weather characteristics like terrains, ob-
stacles, pressures, and temperatures are taken into account
in physical models for predicting wind speed and the power
generated [9]. Historical data are also used to create a
mathematical model in time-series modeling, estimating
parameters and verifying simulation characteristics [9].

Applications of artificial intelligence algorithms in wind
farms are reported in literature [10]. Gomes and Castro
proved that both autoregressive moving average and ANN
performed well in forecasting wind power using statistical
models [11]. Ouyang et al. trained support vector machine,
multilayer perception, k-nearest neighbor, and random
forest to develop a combined multivariate model [12]. Ar-
tificial Neural Network- (ANN-) based wind power pre-
diction models have been developed in Denmark [13],
Senegal [14], North India [15], USA [16], and Tamil Nadu,
India [17]. Marginal Weibull distributions have been used to
define synthetic wind speed variates in simulating correlated

wind speed and power variates in wind parks, and nonlinear
turbine power curves have been applied to obtain power
output variates [18]. Similar research studies have been
conducted for short-term forecasting of wind power using
time-series [19, 20] and hybrid [21] models. Rahmani et al.
used swarm intelligence for short-term wind energy fore-
casting in Iran and showed that better results could be
obtained by the hybridization of the two algorithms used in
their study, namely, the ant colony optimization and particle
swarm optimization [22]. Similarly, a data filtering tech-
nique based on wavelet transform and neural network were
optimized by using particle swarm optimization algorithm
[23]. *e temporal–geographical correlations of wind speed
in different geographical conditions were studied in China
for both linear and nonlinear situations using the linear
Pearson coefficient and the nonlinear Spearman rank co-
efficient and tail correlation coefficient [24]. *e perfor-
mance of wind power prediction models can be assessed by
the statistical measures of normalized error, normalized
mean biased error, normalized mean absolute error per-
centage, mean squared logarithmic error, R2, explained
variance score, and the median absolute error [25].

Very few studies have been undertaken to explore the
wind power generation and the effect of climatic variables on
it in Sri Lanka. As pointed out by the Asian Development
Bank too, Sri Lanka has been found to possess vast potential
to exploit wind power as a viable option to generate elec-
tricity, to be integrated to the national grid [26]. However, it
is not a smooth process owing to many reasons associated
with integration of wind power generated electricity to a
national grid, as described below. Accurate predictions on
the wind power to be produced by the turbines are required
for the grid operators from very short time scales to a few
days ahead, in order to strike the balance between power
supply and demand. Uncertainties and frequent fluctuations
in wind speed and direction are detrimental to the increase
of wind power within the national grid, because of their
impact on the variation of power generated at a wind farm
(turbines). Further, the temporal, geographical, and climatic
factors like the particular time of the day, terrain, humidity,
and temperature also affect the wind power generation that
depends on generator hours of wind turbines, speed, and
direction of the wind, air density, and position of the tur-
bines. If the wind speed changes could be precisely forecast,
it could bring about multiple benefits in adjusting control
systems, maintenance scheduling, reducing economic and
technical risks, and profit maximization of the power trade.
A recent study has pointed out that Sri Lanka possesses
about 20% of its land in coastal areas, to be utilized for wind
power generation [27]. In [28], an adaptive filter was used for
forecasting power fluctuations of a wind turbine installed in
Kalpitiya area of the north-western region of Sri Lanka,
which predicted its power generation with 5.07% root mean
square error of its mean value. In this technique, filter
weights are constantly modified with the fluctuation of wind
pattern, which claimed better predictions over the time-
series method. ANN-based models have also been developed
to forecast the wind power generation of a wind farm in-
stalled in the same region resulting in R> 0.91, MSE < 0.22,
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and bias < 1 [29]. However, none of the aforementioned
research presents a formula for the predicted power in terms
of the independent variable.

Due to the importance attached to the wind speed
among all numerical weather prediction data, the objective
of this research was focused on studying the variation of
wind power generated by an onshore wind farm with the
wind speed and temperature, based on five years of data
since 2015.*is is essential as the country needs an initiation
of research related to wind power. *erefore, this paper
presents a novel research study based on the wind farm
Pawan Danavi to forecast its wind power generation based
on the available and most important climatic factors. In this
sense, this study provides an insight into the other existing
wind farms in Sri Lanka as well as to the proposed wind
power farms, to understand the future wind power
generation.

*e next section will describe both wind farm and
meteorological data. Further, it presents the techniques used,
namely, the Feed Forward Artificial Neural Network (ANN),
Multiple Linear Regression (MLR), Power Regression (PR),
and the evaluation criteria of the models. Section 3 presents
the results obtained with a discussion and the conclusions
are summarized in Section 4.

2. Materials and Methods

2.1. Wind Farm Data. *is research presents the analysis of
wind power generation for the “Pawan Danavi” wind farm,
which is located in Kalpitiya (around 08°02′56″N
79°43′08″E), north-western province in Sri Lanka. *is
geographical area was identified as one of the best locations
in Sri Lanka to establish a wind farm [26]. *erefore, wind
farm called Pawan Danavi was constructed and connected to
national electricity grid for its operation in August 2012.*e
wind farm is constructed onshore and has 10.2MW
nameplate capacity with 12 wind turbines (model: Gamesa
G58-850). *e height of each tower is around 65m, and the
diameter of the blades is around 58m.

Each wind turbine has three blades and its rated power of
is 850 kW. *e generation voltage of the plant is 690V (AC)
and it is stepped up using a transformer to 33 kV for
connecting to the Sri Lanka’s national power grid, which has
a transmission voltage of 33 kV. *e rotational speed of the
rotor varies between 19.44 and 30.8 rpm and the rated stator
current at 690V is 670 A. *e standard power factor at the
generator output terminals at low-voltage side before
transformer input terminals is 0.95 at partial loads and 1 at
nominal power.

Monthly average power generation data from January
2015 to December 2019 were obtained from the wind farm
authorities (Lanka Transformers Private Limited, Sir Lanka).
Figure 1(a) exhibits the variation of generated power over
the 5 years. *e peak power generation can be seen in the
months of June followed by July and August, respectively
(refer to Figure 1(b)). *e power generation as well as the
variation is less than 40 kW fromNovember to April. During
the past 5 years, the power generation varied between
113 kW and 3,064 kW with a mean of 1,588 kW.*e highest

variation in power generation was observed in October,
which varies between 120 kW and 1305 kW.

*e statistics of the wind power generation can further
be seen in Table 1. On average, May to September, where Sri
Lanka is experiencing the southwestern monsoon winds, are
having relatively higher wind power generation. Out of
them, June has the highest wind power generation and the
month’s minimum is also higher than most of the maxi-
mums in other months.

2.2. Meteorological Data. Climate parameters of mean wind
speed (WS in m/s) and mean ambient temperature (T in °C)
were considered input variables in the modeling process.
*eir statistics were used with the average power output
(MW) data in the period of January 2015 to December 2019.
*e monthly climatic data were collected from the wind
farm, as there is an in-house meteorological station. *e
variations of mean wind speed and mean ambient tem-
perature are illustrated in Figure 2(a). Both weather indices
indicated the peak values in the mid of each year. *e wind
speed varied between 11m/s and 2.4m/s having a mean of
6m/s. *e highest variation in wind speed was observed in
December (3.1–8.6m/s) followed by October (2.7–6.9m/s).
More importantly, the wind speed in August was somewhat
steady (8.2–8.9m/s). In addition, the ambient temperature
was varied between 40.7°C and 33.4°C with a mean of 37°C.
*ese statistical particulars for the period of 2015–2020 can
also be seen in Figure 2(b).

2.3. Wind Power Generation and Climatic Factors. *e ki-
netic energy of the wind depends on the density of the air;
thus, the wind power generation is also proportional to the
air density. *erefore, the wind power generation can be
formulated as shown in the following equation:

P � 0.5DairAV
3
, (1)

where Dair, A, and V are the air density (in kg/m3), the swept
area of wind turbine (in m3), and the upstream wind speed
(in m/s), respectively [25]. *e density of the air can be
represented as function of d, density of the dry air at at-
mospheric temperature (at 25°C, d� 1.168 kg/m3), T, the
absolute temperature (in kelvin), B, the barometric pressure
(in torr; 1 atm� 760 torr) and e, the vapor pressure of moist
air (in torr) and given in the following equation [30]:

Dair � d
273.15

T
􏼒 􏼓 ×

B − 0.3783e

760
􏼒 􏼓. (2)

*e power output of the turbine depends on the wind
capacity because the garnered power is cubic proportional to
the wind speed. However, the air density is inversely pro-
portional to the absolute temperature and directly pro-
portional to the barometric pressure. *us, the air density is
less influential in comparison to wind variations.

In addition, the generated wind power depends on the
average wind direction too. However, the rotor is rotated
based on the wind direction. Furthermore, the blades are
angled, so that the energy generation is optimum. *e wind
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rose diagram developed based on the wind direction and
speed data over the past 5 years is illustrated in Figure 3. It
reveals that the dominant wind direction for the highest
wind contribution lies between 157.5° and 202.5° (south
southeastern to south southwestern) while the wind with
speed higher than 7.5m/s mainly lies between south and
south southeastern.

*e 3D surface plot of the power generation with respect
to average wind speed and ambient temperature can be seen
in Figure 4. *e relationships to the wind power generation
with respect to average wind speed and ambient temperature

can be clearly observed. When the ambient temperature and
the wind speed are higher, the power output is also higher.

2.4. Modeling Techniques

2.4.1. Feed-Forward Artificial Neural Network Based on
Levenberg–Marquardt Method. Error back-propagation
mechanism is used to adjust the learning parameters in the
feed-forward neural networks. *is process goes until the
stopping criterion is achieved. *e learning parameters can

Table 1: Variation of mean wind power generation (in kW).

Statistical parameter
Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Mean 485 457 283 266 1575 2697 2243 1893 1650 627 245 324
Minimum 298 283 188 142 1040 2466 1811 1091 1409 120 113 184
Maximum 570 663 391 512 1801 3065 2560 2191 2033 1305 360 435
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Figure 1: Variation of mean wind power generation. (a) Over the 5 years. (b) Averaged variation over a year.
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be adjusted based on the information used in the error
surface. *e information also can be local or global based on
the problems. In addition, the curvature of the error surface
is optional in use. Simple Gradient Descent (GD) was used
for a long time as the most widely used learning algorithm.
Modifications like momentum and adaptive learning coef-
ficients were incorporated to overcome the poor conver-
gence rates of the learning algorithm [31]. However, the
learning algorithms based on Gauss–Newton (GN) method

have shown significantly improved convergence rates. *ese
2nd-order methods use the information on error surface for
the convergence [32].

Levenberg–Marquardt method (LM) is one of the widely
used learning algorithms in the related research to train the
neural networks. *is algorithm interpolates between two
methods discussed above, GD and GN. *erefore, the
training algorithm takes the merits of both GD and GN
methods to produce stable and fast converging solutions.
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Figure 2: Variation of independent variables. (a) Over the 5 years. (b) Averaged variation over a year.
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*e learning parameter optimization is used as the goal
to minimize the objective function of the multilayer feed-
forward neural networks. *e iterative process is continu-
ously carried out until the optimizationmeets the predefined
value. *erefore, the technique gives excellent results for the
smaller-scale problems; however, it is inefficient in larger-
scale problems due to the computational complexity,
memory usages, and error oscillations [32].

Nevertheless, the iterations in LM training algorithm
always decrease the objective function unlike many other
algorithms like GD, conjugate gradient, resilient back-
propagation, etc. *erefore, from one iteration to the next
iteration, there will be a decrease in the objective function.
*is is a merit of the algorithm; however, it also can lead to
heavy computational costs. Within an iteration, the algo-
rithm searches for the new parameters as required to de-
crease the objective function and therefore, the
computational cost becomes higher. Nevertheless, LM

training algorithm is widely used by many researchers to
solve nonlinear problems where the output is important
rather than the methodology. More information on the LM
algorithm can be found in Tomislav et al.’s work [33].

2.4.2. Multiple Linear Regression (MLR). *e relationships
which have reasons and result relations can effectively be
estimated using the regression analysis. *e linear rela-
tionship is formed as an equation in between the mainly one
dependent variable with respect to the set of independent
variables. Regression models with one dependent variable
with a set of independent variables are the multilinear re-
gression [34]. *e multivariate regression model can be
mathematically formed as follows:

y � β0 + β1x1 + β2x2 + . . . + βixi + ε, (3)

where β0 is the y-intercept (a constant term), βi is the slope
coefficient for each input variable; and ε is the model de-
viation. *is showcases the progression of simple linear
regression model to the multivariate linear regression
(where the first two sections can be found in single re-
gression (y � β0 + β1x1)). *erefore, the two linear models
have to be carefully used in various calculations, however,
while understanding variable behaviors. *erefore, simply
the linear term emphasizes linearity on the variables without
moving to any higher orders [35].

*us, the multivariate regression assumes the data set to
be normally distributed, without extreme values and no
multiple ties between independent variables. *ese as-
sumptions can be assessed by examining the residuals,
having fitted a model.

2.4.3. Power Regression (PR). Power Regression (PR) is a
nonlinear regression model, where the output is modeled in
proportion to a power of the explanatory variables. *e
regression can be expressed as shown in the following
equation:

y � ax
b
1x

c
2 . . . x

p
i , (4)

where i is the number of observations and a, b, c, . . . , p are
constants. *erefore, the power regression plots are usually
exponentially upward or downward in shape. *e regression
is reliable to predict values within interpolation limits;
however, it is less reliable in extrapolation. *e negative x-
values are inappropriate in this setting because raising them
to an arbitrary power can produce complex results that
satisfy the minimization problem, but do not correspond to
the real y-values. Power regression has been used by many
researchers for a long time and it is continued to be used for
many engineering applications [36–38].

2.5. Evaluation Criteria

2.5.1. Pearson Correlation Coefficient. Linear dependency of
the random variables is usually measured by the Pearson
correlation coefficient. *e following set of equations
showcase the definition of the Pearson correlation
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coefficient. Two random variables are proposed as X and Y,
with their expectations E(X) and E(Y), respectively. *e
variances D(X) and D(Y) are defined as given in the fol-
lowing equations:

D(X) � E[X − E(X)]
2
, D(X)> 0, (5)

D(Y) � E[Y − E(Y)]
2
, D(Y) > 0. (6)

*e covariance (cov(X, Y)) of the variables can be
formulated as follows:

cov(X, Y) � E [X − E(X)][Y − E(Y)]{ }. (7)

*erefore, by definition, the Pearson correlation coef-
ficient (R) can be presented as follows:

R �
cov(X, Y)

�����
D(X)

􏽰 �����
D(Y)

􏽰 �
􏽐

N
i�1 xi − x( 􏼁 yi − y( 􏼁

������������������������

􏽐
N
i�1 xi − x( 􏼁

2
􏽐

N
i�1 yi − y( 􏼁

2
􏽱 .

(8)

*e numerical value of the Pearson coefficient is in
between −1 and +1. When it is +1, there is a perfect, positive
linear correlation in between the two variables. However, if it
is −1, the correlation is perfect, but it is negative. When this
is 0, there is no linear correlation between the variables. *e
Pearson correlation coefficient is easy and convenient to
calculate; however, it is poor in performance for the non-
linear relationships. Nevertheless, a zero correlation does
not mean that the variables are totally independent.
*erefore, a multivariate normal distribution is recom-
mended to analyze true independence of the variables. More
information can be found in Lee et al.’s work [39].

2.5.2. Spearman’s Correlation Coefficient. *e Spearman
correlation coefficient is a nonparametric test, but similar to
the Pearson correlation coefficient. It measures the strength
and the direction of correlation of two variables [40]. Unlike
the Pearson correlation coefficient, Spearman’s correlation
coefficient can assess the monotonic relationships and the
relationships need not be linear. However, a similar pre-
sentation for the assessment can be made based on the
numerical values of Spearman’s correlation coefficient (−1 or
+1). *e coefficient has a higher numerical value when there
is a similar rank between two variables and vice versa.
*erefore, the coefficient is defined as the Pearson corre-
lation coefficient of the ranked variables.

*e coefficient (rs) is formulated as follows:

rs � ρrgX,rgY
�
cov rgX, rgY( 􏼁

σrgX
σrgY

, (9)

where n, Xi, and Yi are the sample size and two raw sources
of variables, respectively. rgX, rgY, cov(rgX, rgY), σrgX

, and
σrgY

are the ranks corresponding to the two raw source
variables, covariance of the rank variables, and the standard
deviations of the rank variables, respectively. In addition, ρ
denotes the usual Pearson correlation coefficient, but applied

to the rank variables. If all n ranks are distinct integers, then
the coefficient can be computed as follows:

rs � 1 −
6􏽐 d

2
i

n n
2

− 1􏼐 􏼑
, (10)

where di � rg(Xi) − rg(Yi) is the difference between the
two ranks of each observation and n is the number of ob-
servations. More details of the Spearman correlation coef-
ficient can be found in Zar’s work [40], and the coefficient
was extensively used in related research [41–43].

2.5.3. Mean Squared Error (MSE) and Root Mean Squared
Error (RMSE). *e squares of the errors are averaged to
obtain the Mean Squared Error (MSE). *e error is the
difference between the estimated (or predicted) values and
the corresponding actual (or observed) values.*erefore, the
lower the MSE, the higher the accuracy of the prediction.
*e MSE is a risk function, and it is always positive and the
zero is the lowest [44]. *ere is a significant disadvantage in
the MSE. It sometimes has a higher order compared to the
order of the data set. *erefore, as a solution to this dis-
advantage, Root Mean Squared Error (RMSE) is proposed
and showcased in the following equation:

RMSE �

������������

􏽐
N
i�1 xi − yi( 􏼁

2

N

􏽳

. (11)

RMSE is a widely used assessor to analyze the accuracy of
predicted nature against the observed nature of physical
problems. Similar to MSE, RMSE is nonnegative and 0
represents the perfect match. However, it is impossible to
have a perfect match in the real world. Lowering the RMSE
produces better prediction models. However, comparisons
across different types of data would be invalid because the
measure is dependent on the scale of the numbers used.
*erefore, RMSE is a measure of accuracy, to compare
forecasting errors of different models for a particular dataset
and not between datasets, as it is scale-dependent [45].

2.5.4. Bias and Nash Number. Bias measures the overesti-
mation tendency or underestimation tendency of predictive
parameters. Mean error in statistics is the bias. *erefore, it
averages all possible errors. Uncertainty in a measurement
or the difference between observed and predicted values are
considered errors. *e bias gives poor results for both
statistical and physical methods. In addition, it does not
showcase the degree of precision of the forecasting method
[46].*e bias is mathematically presented in equation (12) in
the usual notations described earlier:

bias �
􏽐

N
i�1 yi − xi( 􏼁

N
. (12)

In addition, the Nash number is presented as follows:

Nash number � 1 −
􏽐

N
i�1 xi − yi( 􏼁

2

􏽐
N
i�1 xi − xaverage􏼐 􏼑

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (13)
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It presents a measure of error variance of model (pre-
dicted) by the variance of observed. However, Nash number
of 1 gives the perfect system and thus no error variance in the
modeled (predicted) time-series [47].

2.6. Wind Power Model Development. Wind power gener-
ation data, wind speed, and temperature data were modeled
based on equation (14) to identify the wind power gener-
ation predictionmodel.*reemethods, ANN,MLR, and PR,
were used to develop wind power generation models based
on the available data.

wind power � f(wind speed, ambient temperature).
(14)

3. Results and Discussion

3.1. Correlation Results. Both independent variables, viz.,
wind speed and temperature, exhibit a normal distribution
as can be seen in Figures 5(a) and 5(b). *is is the most
acceptable probability distribution for real-world scenarios.
In addition, each of them has an acceptable linear correlation
with the generated wind power, which is the dependent
variable (refer to Figures 6(a) and 6(b)).

Although some outliers are present in Figure 6, both
figures indicate an acceptable degree of linear behavior,
wherein the wind power exhibits a more scattered distri-
bution against the temperature compared to the better
linearity between wind power and wind speed.

*e correlation among each variable was investigated in
terms of the Pearson correlation (refer to Table 2). *e
correlation between the wind power and the wind speed is
the highest with 0.92, while the second highest correlation
exists between wind power and the temperature. *e cor-
relation between the independent variables is 0.73. Similar
observations can be seen for the Spearman correlation values
(rs) too. *erefore, the correlations among all the variables
can be suggested strong.

Variation of the dependent variable around the mean
power with reference to the variation of independent var-
iables around their mean values was analyzed and its results
can be seen in Figure 7. Both variations are positive. A unit
increment (or decrement) in the wind speed (in m/s) in-
creases (or decreases) the power generation by about
355 kW. *e higher determination coefficient of the trend
line (0.84) indicates its validity. *e increase (or decrease) in
temperature by 1°C increases (or decreases) the power
generation by about 349 kW.

3.2. Wind Power Prediction Models. An ANN model was
developed by applying the LM algorithm 70% of the data was
used for training. *e rest of the data were distributed
equally for testing and validation. *e coefficient of corre-
lation for training, validation, and test was found as 0.99,
0.92, and 0.96, respectively. Predicted power values obtained
by applying ANNwere plotted against the actual wind power
(refer to Figure 8(a)). *e overall coefficient of correlation of

the ANN model was 0.97. *e predicted power values
(Figure 8(a)) prove the accuracy of the ANN model with
slight or no deviations from the actual wind power values.

In contrast, some predicted power values of the re-
gression models deviate considerably from the corre-
sponding actual power values. However, MLR (refer to
Figure 8(b)) and PR (refer to Figure 8(c)) models also exhibit
a correlation coefficient of 0.95 and 0.94 proving their high
accuracy. *e distribution of error percentage too proves
that the ANN-based model outperforms the regression-
based models (refer to Figure 8(d)). Among the regression-
based prediction models, MLR outperforms PR having a
majority of errors with error percentages less than 25%.

*e accuracy of the models was evaluated in terms of
MSE, bias, and Nash number. *e comparison results are
presented in Table 3. All three models have very low RMSE
and bias values. *e Nash number of the ANNmodel is very
close to 1, demonstrating its superior accuracy while that of
the regression models is about 0.9, which is acceptable.

Table 3 showcases better Nash number performance in
ANN. In addition, it has the minimum RMSE value among
other two tests carried out. However, there is a drawback in
the ANN architecture. *e prediction model is incapable of
developing a mathematical relationship between the de-
pendent and independent variables. In other words, the
mathematical behavior of equation (14) is inaccessible from
ANN. *erefore, the developed ANN model has to be saved
and rerun whenever needed.

*is drawback can be eliminated with other two de-
veloped models, MLR and PR. Equations (15) and (16) were
derived from those two models.

Wind powerMLR � −6053.4 + 252.7WS + 150.7T, (15)

Wind powerPR � 2 × 10− 8
􏼐 􏼑 × WS

1.69
T
5.9

. (16)

*e ability to express the wind power generation in
terms of the independent variables is a greater advantage in
the prediction models developed based on the MLR and PR
techniques. More importantly, the performance of the
models is acceptable.*erefore, MLR- and PR-based models
have a merit over the ANN model.

3.3. Comparison with Wind Power Models. Some research
studies conducted on wind farms located in other countries
express the power generation in terms of variables (Table 4).
In most of the studies, a single variable of wind speed was
considered to develop linear [48] or quadratic [48, 49] re-
lationships. Turbine details were also incorporated to ex-
press the predicted power [50]. However, it is useful only
when different types of wind turbines are used in a wind
farm. *e predicted power can be expressed in terms of the
current and previous power generation data in time-series
analysis [51]. *e model proposed in this research is more
comprehensive in this sense as the ambient temperature has
also been incorporated in addition to the wind speed to
predict the wind power.
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*e ANN model presented in this research paper has
better performance compared to the models developed by
applying artificial intelligence algorithms [10]. However, the
performance of the statistical methods presented in this
study is slightly lower than that of the ANN model. Nev-
ertheless, all the models proposed here are highly accurate
with R> 0.94. *e RMSE values of the models proposed in
[48] are comparable to those of the ANN-basedmodel of this

paper while the same of the Kalman filter based model in
[49] is comparable to those of the MLR- and PR-based
models introduced here. All three models of the present
work produced coefficients of correlation higher than that
generated by the Kalman filter-based model [49]. Accord-
ingly, the performance of the proposed statistical models is
also comparable to that of the wind power models presented
in similar research studies. More importantly, they revealed
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Figure 5: Normal distribution of the independent variables. (a) For wind speed. (b) For temperature.
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Figure 6: Correlation between the dependent variable and the independent variables. (a) For wind speed. (b) For temperature.

Table 2: Pearson’s and Spearman’s correlation matrix.
Wind speed R� 1, rs � 1 — —
Temperature R� 0.73, rs � 0.73 R� 1, rs � 1 —
Output power R� 0.92, rs � 0.91 R� 0.84, rs � 0.82 R� 1, rs � 1
— Wind speed Temperature Output power
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Figure 7: Variation of the dependent variable around the mean power. (a) With the variation of wind speed around its mean. (b) With the
variation of ambient temperature around its mean.
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Figure 8: Performance of the models. (a) For ANN. (b) For MLR. (c) For PR. (d) Error percentage.

Table 3: Comparison of ANN and regression models.

R RMSE Bias Nash number
ANN 0.97 109 −0.0003 0.98
MLR 0.95 279 0 0.90
PR 0.94 287 0.0074 0.89

Table 4: Expression of wind power models.

Ref. Area/country of study Equation of the wind power model Performance
48 Brazil Power output� −130.662 + 37.760 wind speed RMSE� 101.29 kW

48 Brazil Power output� −18.500–0.201 wind speed + 2.710
(wind speed)2 RMSE� 100.64 kW

49 *e islands of Crete and Kefalonia, Greece Power output� 10.45 wind speed + 7.08 (wind speed)2–108.5 RMSE� 267.45 kW
R2 � 0.37 (R� 0.61)

50 Florida, USA

Pout �Prated ∗ CF � Prated [0.087V–Prated/D2]

Accuracy� 2.6–3.5%

where
Pout � power output

Prated � rated power of the turbine (kW)
CF � capacity factor

V � yearly averaged wind speed (m/s)
D� turbine diameter (m)

51 Goodnoe Hills, Washington, USA
U(t + 1)� 1.1044U (t)−0.2273U (t − 1) Forecast

probability< 0.885where
U(t + 1)� one hour ahead power forecast
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the advantage that the wind power could be expressed in
terms of the independent variables of wind speed and
ambient temperature. *erefore, MLR and PR models can
also be readily used to predict the wind power generation
when the future weather conditions are known or forecast.

4. Conclusions

Wind power forecasting is essential to the future world in
numerous ways. *is paper presented a forecasting (pre-
diction) study on wind power generation based on the
relevant climatic factors. *e developed models were suc-
cessfully applied to Pawan Danavi, a wind power farm in Sri
Lanka. *e results revealed that the three models developed
based on ANN, MLR, and PR techniques showcase similar
and acceptable performances. ANN is lacking on producing
a mathematical function, though the other two models have
successfully expressed the wind power in the form of
mathematical functions. MLR- and PR-based equations
proposed for Pawan Danavi wind power farm for its wind
power generation are based on wind speed and the ambient
temperature of the wind farm area. *erefore, in the event
the wind speeds and ambient temperatures are projected for
future years, the wind power generation can be readily
predicted. *is is a significant improvement to the current
literature as this knowledge was not available for the Sri
Lankan wind farms prior to this study. *ese results and
conclusions can be used by the sustainable energy author-
ities in Sri Lanka.
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