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Distributed clustering is widely used in ad hoc deployed wireless networks. Distributed clustering algorithms like DMAC, HEED,
MEDIC, ANTCLUST-based, and EDCR produce well-distributed Cluster Heads (CHs) using dependent thinning techniques
where a node’s decision to be a CH depends on the decision of its neighbors. An analytical technique to determine the cluster
density of this class of algorithms is proposed. This information is required to set the algorithm parameters before a wireless
network is deployed. Simulation results are presented in order to verify the analytical findings.

1. Introduction

Distributed clustering is a robust technique used to organize
ad hoc deployed wireless nodes to form a communication
network [1]. It is widely adopted in energy constrained
ad hoc deployed wireless sensor networks (WSNs) [2].
Distributed clustering algorithms, used in ad hoc deployed
wireless networks, can be broadly categorized into two
classes. The first category consists of independent random-
ized cluster head (CH) selection class of algorithms; that is,
the decision for a node to be a CH is made independent of the
decision of its neighboring nodes. For example algorithms
such as LEACH [3], LEACH-D [4], SEP [5], and EDAC
[6] fall into this category. These algorithms do not produce
well-distributed CHs [7]. They may produce two or more
adjoining nodes as CHs. Furthermore, the variation between
the theoretical expected number of CHs for these algorithms
is considerable when compared to the actual number of CHs
obtained after deployment [8]. The second category consists
of distributed clustering algorithms like DMAC [1], HEED
[9], ANTCLUST based [10], MEDIC [11], EDCR [12], and
its derivatives [13]. The location of a CH for these algorithms
is dependent on its neighbors decision as well. This ensures
that no two CHs appear in each others neighborhood and
all nodes have at least one CH in their neighborhood or the
node itself is a CH. They produce well-distributed clusters
using dependent decision making and is referred too as

Dependent Thinning Distributed Clustering (DTDC) class
of algorithms. We note that the CH selection process of
DTDC class of algorithms resembles the reverse price auction
and is sometimes known as the Dutch auction [11] method.

Irrespective of the distributed clustering algorithm used
in ad hoc deployed wireless network applications, the
knowledge of the expected number of clusters, denoted by
E[k], is an important parameter required at the planning
stage of the network. For example, consider a WSN where
data is collected periodically and aggregated at the CH, then
communicated to the base station (BS). The application
may expect E[k] number of clusters, where each cluster
has an expected number of nodes, denoted by E[n], in
the given deployment area A. The given requirement is
generated based on the level of reliability expected from the
collected data. That is, the reliability is directly connected
to the redundancies associated with the nodes within a
cluster [14]. Another example is if an ad hoc deployed
wireless network application is required to produce an
optimal number of clusters E[k] based on the requirement to
minimize the energy cost for communication and maximize
the network lifetime [15, 16]. In both these examples, the
WSN parameters should be set appropriately at the initial
deployment stage so that when in operation the desired
number of clusters E[k] is achieved to meet the design
objective. In the first example, this objective is increased
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reliability, where as in the second example it is to maximize
the lifetime.

To identify the importance of knowing WSN design
parameters, let us look at a known example like the LEACH
algorithm from the first category. LEACH uses a parameter
p which represents the expected proportion of nodes to
be CHs. That is, a node has p probability of becoming a
CH independent of the decision of its neighbors. When an
independent randomized clustering algorithm like LEACH
is applied to an ad hoc deployed network where N nodes
are uniform randomly deployed in a given area, the expected
number of clusters can be found using the expression E[k] =
pN [3]. According to [17], the node distribution of such
a system is considered to be a 2-D Poisson point process
with intensity λ = N/A, and the resultant CHs too would
be distributed as a 2-D Poisson point process with intensity
(i.e., CH density) λc = pλ. We see that by setting the WSN
parameters p and N we can achieve a desired E[k]. That is
the analytical expressions presented play an important part
in achieving the proper E[k].

To the authors knowledge, no such analysis exists to
determine the CH distribution and density (λc) of DTDC
class of algorithms. However, Bettstetter [18] has presented
an empirical formula for the CH density of the DMAC
algorithm using simulation results. As it is an empirical
formula, it cannot be generalized. In this paper we present
an analytical expression for CH density for the DTDC class
of algorithms in order to address this gap.

In what follows, we will first establish that the DTDC
class of algorithms such as HEED, ANTCLUST based,
DMAC, MEDIC, and EDCR will indeed fall into one
common category in terms of their CH distribution. Then,
we will determine the probability distribution of the cluster
area of the DTDC class of algorithms. Subsequently, the
distribution of the cluster area will be used to derive the
cluster density. Furthermore, we will also consider the
boundary (or boarder) effect due to the finite geographical
area in which the nodes are distributed and modify the
expressions to accommodate it. The proposed analytical
results will prove that the empirical results derived using
simulations by Bettstetter in [18] are indeed accurate.

Rest of the paper is organized as follows: Section 2
presents the nomenclature. Section 3 provides a mathemat-
ical model to express the CH selection and distribution
common to all DTDC algorithms. In in Section 4 the model
presented in the previous section will be used to identify
a probability distribution of cluster area of DTDC class of
algorithms. Subsequently in Section 5 these results will be
used to find the cluster density and the number of expected
clusters in a rectangular and circular deployment area.
Simulation results presented in Section 6 establish that the
analytical findings are in line with the actual values presented
in existing literature. Section 7 presents the conclusion.

2. Nomenclature

Table 1 gives the notations used in what follows. Some are
extracted from [12].

Table 1: Brief definition of some notations used in the paper.

λ Intensity of sensor node distribution point process.

α Random variable denoting the cluster area.

R
CH message broadcasting distance (using an omni
direction antenna).

Ti

Time at which a node i is supposed to broadcast its
CH candidacy, provided that it has not heard similar
messages from its neighbor.

S Set of all N sensor nodes deployed in the sensor bed.

H Set of all CHs at a given moment.

|ni − nj| Euclidean distance between any two nodes ni and nj .

y
Random variable denoting the probability of any
selected random node could be a CH in a given
moment.

E[k]
Expected number of clusters where k represents the
number of clusters in any given moment.

E[n] Expected number of nodes in a given cluster.

λc CH density.

3. Preliminaries

This section presents the background necessary to find the
CH density of DTDC class algorithms covering HEED,
DMAC, ANTCLUST base, MEDIC, and EDCR. As men-
tioned before, these algorithms will produce well-distributed
CHs by making a node’s decision to be a CH based on the
decisions of other nodes in its neighborhood.

We assume that there are N number of uniform-
randomly distributed nodes in a given deployment area A
resulting in a 2-D Poisson point distribution of intensity
λ, where λ = N/A [17] in our analysis. Furthermore we
assume that all clusters are well populated; that is, each
cluster consists of a large number of less reliable low cost
nodes which work collaboratively to achieve reliable results.
Hence, αλ � 1 where α is a random variable denoting the
cluster area. According to the DTDC class of algorithms, the
area covered by a CH candidacy message is given by πR2,
where R represents the maximum distance a CH candidacy
announcement message would reach. Since α < πR2,

πR2λ� 1. (1)

The following common features exists in the DTDC class
of algorithms.

(a) DTDC class of algorithms does not allow two CHs to
be within a distance R. Furthermore, it ensures that
all the nodes are either discovered by a CH (i.e., there
is a CH within a distance R of a regular node), or the
node itself is a CH.

(b) Each node calculates a time Ti at which it will broad-
cast the CH candidacy announcement, provided it
has not heard a similar message from a neighbor
by this time. Ti calculation is algorithm specific.
However, all algorithms ensure that Ti is inversely
proportional to the fitness of a node to be a CH.
For example in the EDCR algorithm, Ti is inversely
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proportional to the relative residual energy level of a
node [12]. As such, the node with the highest fitness
to become a CH will have the lowest Ti, resulting it to
announce CH candidacy first and becoming the CH
for that neighborhood.

(c) All the algorithms use a random component for
tiebreaking. Hence, when all nodes are equally fit to
be CHs, Ti is purely random. This is true for EDCR,
HEED, MEDIC and ANTCLUST algorithms at the
initial deployment stage since all nodes have equal
energy.

Above features of DTDC class of algorithms reaffirm
that the selected CHs represent a dependent thinning point
process on the original 2-D Poisson point process. Let S
represents the set of all deployed nodes, where S ⊂ R2

with |S| = N . The clustering process yields a random set
H ⊆ S of secondary points which are CHs with the property
that |hi − hj| > R, where hi,hj ∈ H and i /= j. Note that
S \ H are the regular (non-CH) member nodes. For any
node mk ∈ S \ H we have |mk − hi| < R and Tmk > Thi

at least for one CH node hi ∈ H . Further, it should be
noted that mk is a member of the cluster with CH hi when
|mk − hi| < |mk − hj| < R for all i /= j.

According to [19] aforementioned dependent thinning
point process follows a Matérn Type III process when Ti is
a pure random value. Hence, we can conclude that the CH
distribution of dependent thinning algorithms like HEED,
ANTCLUST, DMAC, MEDIC, and EDCR immediately after
deployment would resemble a Matérn Type III point process.

Example 1. Figure 1 gives a simplified description of Matérn
Type III process applied to 3 random nodes a, b, and c with
|a − b| = 0.30, |b − c| = 0.23, |a − c| = 0.53, R = 0.4,
Ta = 0.27, Tb = 0.52, and Tc = 0.78.

According to this illustration, since Ta < Tb, a eliminates
b; since b is eliminated, even though Tb < Tc, c would
not be eliminated; hence, nodes a and c will be elected as
CHs. Even though the above description clearly indicates that
the DTDC class of algorithms resemble a Matérn Type III
process, we cannot find the resultant CH density (or expected
number of clusters) using this information. As Bertil Matérn
has shown in [20], the point distribution of Matérn Type III-
dependent thinning process is mathematically intractable.

Based on this background, we will derive the CH density
of the class of DTDC algorithms by finding the probability
density function (p.d.f) of α for practical cases satisfying (1)
in the next section.

4. Probability Density Function of Cluster Area

Based on our analysis we observe that the probability of α
depends on the following two scenarios.

(1) For a given cluster area, there are no uncovered nodes
(uncovered node means a node that has not heard
from a neighboring CH almost at the end of a new
CH candidacy announcement time interval) in its
cluster neighborhood.

+

+

+ +

+
a

b

c

a

c

Primary poisson points Resultant Matérn III points

Figure 1: Simple example of Matérn Type III repulsive point
process.

(2) The chance of having no such uncovered nodes.

Let PB be the probability that no uncovered nodes
exist in a given cluster neighborhood. Then the conditional
probability PA|B denotes the cluster area given no uncovered
nodes existent in a given cluster neighborhood. Based on
these facts, we find the probability PA·B of a resultant cluster
area α when no uncovered nodes exists. One finds that

PA·B(δ1 ≤ α ≤ δ2)

= PA|B(δ1 ≤ α ≤ δ2) · PB(δ1 ≤ α ≤ δ2),
(2)

where 0 ≤ δ1 < δ2 ≤ πR2.
We use Figures 2, 3, and 4 to explain (2). Please note that

the radius of each disk is R in all the figures.
According to the class of DTDC algorithms, smallest

possible cluster area size would result whenever a given CH’s
neighboring CHs sit on the perimeter of its CH broadcasting
coverage disc of radius R since no two CHs could be selected
within each other’s CH broadcasting range R. This situation
is shown in Figure 2.

Hence, we can write

PA|B

(
0 < α <

√
3R2

2

)
= 0. (3)

In other words, Figure 2 shows the possible highest CH
density (Number of CHs in a given unit area). According to
the DTDC class of algorithms, we can expect cluster area sizes
between smallest of

√
3R2/2 to largest of πR2 provided that

there are no uncovered nodes in the cluster neighborhood.
Therefore, we can write

0 < PA|B(δ3 ≤ α ≤ δ4) ≤ 1, (4)

where
√

3R2/2 ≤ δ3 < δ4 ≤ πR2.
Further, when we have close packed clusters (smallest

as shown in Figure 2 and largest as shown in Figure 3),
there cannot be any uncovered areas. In other words, when
cluster area α > 3

√
3R2/2, there can be uncovered nodes in

its neighborhood since there can be uncovered neighboring
regions as shown in Figure 4.

PB(α) represents the probability that there is no uncov-
ered nodes in a given cluster (with area α) neighborhood.
This can be expressed by

PB(α) = P(n = 0 | λAu) = e−λAu , (5)
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Figure 2: Smallest possible cluster size is
√

3R2/2.

Figure 3: Largest possible closed packed cluster size is 3
√

3R2/2.
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Figure 4: Cluster area more than 3
√

3R2/2 creates uncovered region
with area Au (shaded in gray).
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Figure 5: Proof of PB(α > 3
√

3R2/2) → 0.

where Au is any uncovered area formed by the cluster setup as
shown in Figure 4. We can show that the neighboring clusters
are close packed when the cluster area, α ≤ 3

√
3R2/2. In other

words, there is no uncovered area, resulting in Au = 0 for
α ≤ 3

√
3R2/2. As a result, the probability that there would

not be any uncovered nodes is given by

PB

(
α ≤ 3

√
3R2

2

)
= 1. (6)

According to (5), PB(α) is an exponential decaying
function when α > 3

√
3R2/2. Now let us consider Figure 5.

This is a special case of Figures 3 and 4 where nodes 0 and 6
are placed 2R distance apart. According to Figure 5, there is
a chance for a node to be in the uncovered area Au shaded in
gray. The cluster area α of Figure 5 can be expressed as

α = 3
√

3R2

2
+

(
π

6
−
√

3
4

)
R2 = 3

√
3R2

2
(1 + .0349). (7)

This is only 3.49% bigger than the size of the cluster area
shown in Figure 3. The uncovered area Au of Figure 5 is

Au = 2
(
Δp,q,r + Δp,q,c0 + Δp,r,c1 + Δq,r,c6 − Sp,q,c0

−Sp,r,c1 − Sq,r,c6

)
,

(8)
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where, in general, Δx,y,z represents an area of a triangle
{x, y, z}, and Sx,y,z represents an area of a sector {x, y, z}.
Since p = (−0.5R,−0.8660R), q = (0,−R), r =
(−0.5446R,−1.1613R), c0 = (0, 0), c1 = (−1.5R,−0.8660R)
and c6 = (0,−2R), we can derive Au = 0.094R2.

We have shown that λπR2 � 1 in (1). Therefore,
if we consider a WSN with 100 nodes in a given node
neighborhood, then λπR2 = 100 and the resultant PB =
P(n = 0 | λAu) = 0.0502. On the other hand, when the
neighborhood contains 200 nodes, this will be further
reduced to PB = P(n = 0 | λAu) = 0.0025. Hence, we can
conclude that

PB

(
α >

3
√

3R2

2

)
−→ 0, (9)

where λπR2 � 1.
Therefore, we can approximate that

PB

(
α ≤ 3

√
3R2

2

)
= 1,

PB

(
α >

3
√

3R2

2

)
= 0

(10)

provided that λπR2 � 1. Hence, once we combine (2), (3),
(4), and (10) we obtain that

PA·B

(√
3R2

2
> α >

3
√

3R2

2

)
= 0. (11)

Therefore,

PA·B

(√
3R2

2
≤ α ≤ 3

√
3R2

2

)
= 1. (12)

The resultant cluster areas α of DTDC class of
algorithms have an equal chance to be in the interval
[
√

3R2/2, 3
√

3R2/2] , due to the fact that all nodes having
an equal chance to get the lowest Ti as they may have equal
fitness to be a CH. This results in cluster area p.d.f, pA.B(α) to
be uniform. Hence,

pA·B(α) =
⎧⎪⎨
⎪⎩

1√
3R2

,

√
3R2

2
≤ α ≤ 3

√
3R2

2
0, otherwise

(13)

provided that πR2λ� 1.
This far we have derived the p.d.f of cluster area α. This

result will be used in deriving the expected cluster density in
the subsequent section.

5. Derivation of Expected Cluster Density

In this section, we will derive the expected cluster density (or
CH density as each cluster is served by one and only one CH)
for the class of DTDC algorithms.

Let us define y as the probability that a randomly chosen
node is a CH. Thus,

y = Number of CHs in a given area
Number of all nodes in the same given area

= 1
Number of nodes in a random cluster

= 1
αλ

.

(14)

We note that when z = f (x) and x is a random variable
with a p.d.f of pX(x), then the p.d.f of z is given by

pZ(z) = pX
(
f −(z)

)
∣∣ f ′( f −(z)

)∣∣ . (15)

We can write the p.d.f of random variable y, pY (y) using
(13) as,

pY
(
y
) =

⎧⎪⎨
⎪⎩

1√
3y2λR2

,
2

3
√

3λR2
≤ y ≤ 2√

3λR2
.

0, otherwise.
(16)

According to (14), y = k/N , where k is the total number
of CHs at a given moment, and N is the total number of
nodes. Hence E[y], the expected probability that a given
node is a CH, can be given as

E
[
y
] = E

[
k

N

]
= E[k]

N
= λc

λ
, (17)

where λc is the CH density. So we have

λc = E
[
y
]
λ, (18)

E
[
y
] =

∫∞
−∞

ypY
(
y
)
dy

=
∫ 2/

√
3λR2

2/3
√

3λR2
y

1√
3y2λR2

dy

= 1(√
3/π ln 3

)
(πλR2)

= 1
0.5018 (πλR2)

.

(19)

According to (19), we can expect a 0.5018 fraction of
nodes belonging to a given CH’s broadcasting range R
neighborhood to join its cluster.

Further, using (18) and (19), we can show that

λc = λ(√
3/π ln 3

)
πλR2

= ln 3√
3R2

= 1
0.5018πR2

. (20)

Hence, we can conclude that the expected CH density λc
is independent of the node density provided that πR2λ� 1.

Observation 1. The result obtained in (20) matches with the
empirical formula proposed by Bettstetter in [18] where λc =
λ/(1 + μ/2) and μ = πR2λ. When πR2λ � 1 the empirical
formula proposed by Bettstetter reduces to

λc = λ

0.5μ
= 1

0.5πR2
. (21)
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In the analysis thus far we have ignored the influence
of the node deployment region boundary and its effects.
In what follows, we will analyze the boundary effect. The
CHs closest to the boundary does not have any neighboring
CHs beyond the boundary; that is, nodes at the boundary
have a higher isolation probability even though all the nodes
are uniformly distributed within the deployed area. Hence,
CHs are more likely to be found at the boundary. This was
observed and confirmed in [18].

We can use (17) and (19) to derive the expected number
of clusters E[k] to be formed assuming that the boundary
effect does not exist. In other words, we have relaxed the
reality that there can be more CHs close to the boundary
compared to rest of the area. Thus,

E[k] = NE
[
y
] = N(√

3/π ln 3
)
M

, (22)

where M = πR2λ is the expected number of nodes in any
given CHs broadcasting range R. That is, in (22), we have
not considered the boundary effect. In what follows, we
will derive M considering the boundary effect for frequently
considered node deployment region shapes, namely, a rect-
angular region and a circular region. Subsequently we will
use these results to obtain E[k] accounting for the boundary
effect.

5.1. Boundary Effect on E[k] due to a Rectangular Deployment
Area. We derive M for a rectangular region with dimensions
a × b and N ad hoc deployed nodes. For this scenario, the
probability (P0) that two uniformly distributed nodes each
within CH candidacy broadcasting range R is given by the
integral

P0 =
∫ R

0
fS(s)ds, (23)

where fS(s) is the p.d.f of the distance S between two
nodes that are independently and uniformly distributed (at
random) in a rectangular area of size a× b, where a ≥ b > R.
According to [21], fS(s) is given by

fS(s) = 4s
a2b2

(
πab

2
− as− bs +

1
2s2

)
for 0 ≤ s ≤ b. (24)

Further, when there are N(�1) uniformly distributed
nodes in the deployment region, we can expect M nodes in a
given CH neighborhood of radius R, where M is given by

M = NP0. (25)

Hence, using (23)–(25), we can derive

M = NR2π

ab

(
1− 4R

3πab
(a + b) +

R2

2πab

)
. (26)

Therefore, when (26) is used with (22), we can derive the
expected number of CHs. Thus,

E[k] = ab ln 3√
3R2(1− (4R/3πab)(a + b) + (R2/2πab))

. (27)

As we have already discussed, deriving the CH candi-
dacy broadcasting range R for a desired E[k] is a salient
requirement in most applications. Hence rearranging (27),
we obtain that

√
3

2πab
R4 − 4

√
3(a + b)
3πab

R3 +
√

3R2 − ab ln 3
E[k]

= 0. (28)

By solving (28), we can derive R for a given ad hoc
network setup for a rectangular deployment region with the
desired number of clusters, E[k] provided that πR2λ� 1.

5.2. Boundary Effect on E[k] due to a Circular Deployment
Region. Let us now derive E[k] for a circular deployment
region. We follow the same approach as in the rectan-
gular deployment region case. Let’s assume that the ad
hoc deployed wireless node network consists of uniform
randomly deployed N nodes in the circular deployment
region of r radius resulting in λ = N/πr2.

The expected number of neighboring nodes M in a given
CH’s CH candidacy broadcasting range R, for a circular
deployment area with radius of r is also given by (25). Note
that still the P0 given in (23) is applicable. However fS(s),
that is, the p.d.f of the distance S between two nodes that are
independently and uniformly distributed (at random) in a
circular area with radius r is given by

fS(s) = 4s
πr2

⎛
⎝cos−1

(
s

2r

)
− s

2r

√
1−

(
s

2r

)2
⎞
⎠,

for 0 ≤ s ≤ 2r,

(29)

according to [22]. Hence, we can write the E[k] of a given
circular area with radius r as

E[k] = π2 ln 3
2
√

3D(R/r)
, (30)

where

D(R/r) = 4
(
R

2r

)2

cos−1
(
R

2r

)
− 3

(
R

2r

)[
1−

(
R

2r

)2
]1/2

+ 2
(
R

2r

)[
1−

(
R

2r

)2
]3/2

+ sin−1
(
R

2r

)
.

(31)

Thus, we can determineR for a given circular deployment
area with radius r for an expected number of clusters E[k] by
solving the reordered (30).

Note 1. We derived E[k] assuming that Ti is a random
variable. This is true only for the situation where all
nodes have equal fitness to be a CH; that is, the residual
energies all the nodes are the same. This is in fact true for
HEED, ANTCLUST, and EDCR algorithms during initial
deployment with the assumption that the sensors are ideal.
However in subsequent rounds, Ti would be weighted based
on each node’s residual energy level at the beginning of
the cluster formation. That is, a node with the highest
residual energy would be the CH in a given neighborhood.
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We know that a node closest to a CH would spend the
minimum energy in communication. As a result, it would
be the highest energy node in that neighborhood at the
beginning of the subsequent CH selection phase. Hence it
can be observed that a subsequent round, the CHs would
be the nodes closest to the previous CHs. Thus, we can
expect on average, the same number of clusters formed in
subsequent reclustering rounds as well. As a result, (28) will
be valid for all subsequent rounds as well.

In this section, we presented an analytical technique to
find the Cluster/CH density of DTDC class of algorithms.
Further, we derived the expected number of clusters in
a finite area considering the boundary effect. In what
follows, we compare the analytical results with simulation
experiment results.

6. Simulation Results

In this section, the proposed analytical method to determine
the cluster density and expected number of clusters for
the DTDC class of algorithms using MATLAB simulations
were evaluated. It is already established that the proposed
analytical results match the empirical results derived using
DMAC algorithm in [18]. For comparison, the simulation
results for HEED, ANTCLUST, and EDCR algorithms are
presented as well. The results are presented based on the
following design scenarios.

(1) Design requirement of 20 clusters each with 15 nodes
monitoring a square area of 100×100 m2. That is, 300
nodes should be deployed in this region. According
to (28), the computed broadcasting distance is R =
19.42 m to achieve the 20 cluster requirement.

(2) Design requirement of 30 clusters each with 20 nodes
monitoring a rectangular area of 150×100 m2. That is,
600 nodes should be deployed in this region. Accord-
ing to (28) the computed broadcasting distance is
R = 19.11 m to achieve the 30-cluster requirement.

(3) Design requirement of 20 clusters each with 20 nodes
monitoring a circular area with radius 200 m. That
is, 400 nodes should be deployed in this region.
According to the (30) the computed broadcasting
distance is R = 68.24 m to achieve the 20 cluster
requirement.

The simulation results related to above-described scenar-
ios are given in Table 2. H1, A1, and E1 denotes the results
of HEED, ANTCLUST, and EDCR algorithm respectively, for
scenario 1 (square area). Similarly, H2, A2 and E2 represents
the results for scenario 2 (rectangular area) and H3, A3
and E3 represent the results for scenario 3 (circular area).
Note that E[k] denote the desired number of clusters in
each case. The average and standard deviation (AV ± SD)
of the actual number of clusters (E[k]A) obtained via a large
number of different random node deployment simulations
corresponding to each scenario has been tabulated. The
E[k]A tabulated in column “Beginning” corresponds to the
cluster formation results at the initial deployment stage with

Table 2: Applicability of the proposed technique equally among
HEED, ANTCLUST, and EDCR algorithms.

Average number of clusters, E[k]A

Case E[k] (AV ± SD)

Beginning Middle End Overall

H1 20 20.4± 0.5 19.3± 1.2 18.8± 1.1 19.5± 1.2

A1 20 19.6± 0.9 19.4± 1.8 18.8± 1.5 19.3± 1.4

E1 20 19.6± 1.5 20.3± 0.9 20.4± 0.8 20.1± 1.1

H2 30 29.1± 1.6 28.3± 0.8 29.9± 0.8 29.1± 1.3

A2 30 29.7± 1.4 30.1± 1.6 28.4± 2.0 29.4± 1.8

E2 30 29.3± 2.0 30.3± 1.0 30.2± 1.6 29.9± 1.6

H3 20 18.9± 1.9 20.0± 2.2 19.5± 1.1 19.5± 1.8

A3 20 19.3± 1.1 19.6± 0.9 18.3± 1.7 19.1± 1.4

E3 20 19.1± 0.7 19.7± 1.4 17.9± 1.2 18.9± 1.3

a fresh set of homogeneous energy nodes, column “End”
corresponds to the average number of clusters closer to the
end of life of the sensor bed (we used 95% nodes alive
as the lifetime measurement [12]), and column “Middle”
corresponds to an average number of clusters at a position
halfway in between the “Beginning” and “End” scenarios.
Further the cumulative average of these three cases is
presented in the column “Overall”.

The results given in Table 2 show us that the analytical
estimation for R based on E[k] cluster requirement is indeed
valid as only a minimal variation of E[k] is seen in all simula-
tion results. These results (based on HEED, ANTCLUST and
EDCR algorithms) and independent simulation results of
DMAC algorithm (and its corresponding empirical formula)
given in [18] affirm the validity and applicability of the
proposed analytical technique in determining the cluster
density and the expected number of clusters of DTDC class
of algorithms.

As it can be seen from Table 2 all major algorithms in
the DTDC class respond in a similar manner. Hence without
loss of generality the EDCR algorithm can be selected from
this class for further analysis. For the analysis 15 different
hypothetical node deployment requirements (case) which
would cover the applicability of the analytical method with
square, rectangular, and circular deployment regions, with
different expected number of clusters for a given deployment
region, and different expected number of nodes for a given
cluster based on the E[k] requirement will be used. These
requirements are listed in Table 3. The case number will be
used to link the tabulated test results of Table 4 for each
of these node deployment requirements. The column given
under the heading “Area” presents the dimensions of node-
deployed region (e.g., a× b for a rectangular region and πr2

for a circular region), while the rest of the columns represents
the expected number of clusters E[k], expected number of
nodes in a cluster E[n], and the total number of nodes to be
deployed in the region N(= E[k] × E[n]). The last column
presents the calculated R for each case using either (28) or
(30) depending on the shape of the region.
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Table 3: Network deployment requirements.

Case Area E[k] E[n] N R

1 100 × 100 20 20 400 19.42

2 100 × 100 30 20 600 15.57

3 150 × 100 30 20 600 19.11

4 125 × 100 40 25 1000 14.93

5 200 × 200 40 20 800 26.70

6 200 × 200 30 40 1200 31.15

7 200 × 200 30 25 750 31.15

8 200 × 200 30 20 600 31.15

9 200 × 200 30 15 450 31.15

10 200 × 200 30 10 300 31.15

11 200 × 200 10 30 300 57.42

12 π2002 40 15 600 47.04

13 π2002 20 15 300 68.24

14 π3002 20 20 400 102.37

15 π3002 30 30 900 82.24

Table 4: Comparison of expected and actual number of clusters of
EDCR algorithm.

Average number of clusters, E[k]A

Case E[k] (AV ± SD)

Beginning Middle End Overall

1 20 19.6± 1.5 20.3± 0.9 20.4± 0.8 20.1± 1.1

2 30 30.2± 1.6 29.5± 1.1 30.7± 1.3 30.1± 1.4

3 30 29.3± 2.0 30.3± 1.0 30.2± 1.6 29.9± 1.6

4 40 39.8± 2.0 39.6± 1.1 41.6± 1.1 40.3± 1.7

5 40 39.2± 1.9 41.0± 0.9 40.8± 1.4 40.3± 1.6

6 30 30.9± 1.6 31.1± 1.7 32.1± 1.2 31.3± 1.5

7 30 30.4± 1.8 30.9± 1.6 31.0± 1.7 30.8± 1.7

8 30 29.8± 1.5 30.3± 1.1 30.5± 1.5 30.2± 1.4

9 30 28.8± 1.2 28.3± 1.7 28.5± 1.5 28.5± 1.4

10 30 27.3± 1.4 28.0± 2.8 28.3± 1.4 27.8± 2.0

11 10 9.8± 0.9 11.0± 0.8 10.5± 0.9 10.4± 1.0

12 40 38.2± 1.6 39.6± 1.5 39.5± 1.7 39.1± 1.7

13 20 19.1± 0.7 19.7± 1.4 17.9± 1.2 18.9± 1.3

14 20 20.5± 1.5 20.7± 0.9 18.9± 1.6 20.0± 1.5

15 30 30.2± 1.1 33.1± 1.1 32.5± 1.0 31.9± 1.6

Table 4 shows the simulation results of the deployment
requirements listed in Table 3. Table 4 presents the average
and standard deviation (AV ± SD) of the actual number
of clusters we observed with the large number of different
random node deployments corresponding to each case.
The results tabulated in Table 4 indicate that the proposed
analytical technique in estimating R for a desired number
of clusters E[k] is indeed an accurate method to realize the
actual number of clusters. Furthermore, it can be noted that
there is minimal variation in E[k] irrespective of the cluster
shape (rectangular, square, or circular), desired number
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Figure 6: “E[k]A versus λ” for different R: 200 × 200 m2 square
deployment area.

of clusters, and the expected member population in each
cluster, provided that all clusters are well populated.

The simulation results presented thus far clearly show the
applicability of the proposed analytical technique in estimat-
ing the expected number of clusters of the DTDC class of
algorithms provided that each cluster is well populated, that
is, πR2λ � 1. In order to identify a minimum threshold
for πR2λ or expected number of nodes in a cluster E[n]
for a given application requirement, the behavior of curves
representing average number of actual clusters, E[k]A versus
different node densities, λ for different CH broadcasting
ranges, R can be observed. Figures 6 and 7 present these
curves (E[k]A versus λ) of EDCR algorithm applied for a
square deployment region with size 200 × 200 m2 and a
circular deployment region with radius 100 m, respectively.
Both of these graphs consist of E[k]A versus λ curves for R =
25, 30, 35, 40 and 45. The expected number of clusters, E[k]
calculated using (28) and (30) respectively for Figures 6 and
7 and is plotted as a vertical dotted line for each R.

Figures 6 and 7 clearly indicate that all the E[k]A versus
λ curves are asymptotic and close to the expected number of
clusters, E[k]. The vertical solid error bars marked on each
E[k] line shows the 5% (short) and 10% (long) levels below
the E[k] at πR2λ are 30 and 20, respectively. It has been
already identified that 0.5018 fraction of nodes belonging
to any given CH’s broadcasting range R neighborhood (M)
to join its cluster in Section 5. Therefore, the proposed
analytical technique can be used to determine CH candidacy
broadcasting range, R of DTDC class of algorithms with a
maximum error of 10% for a required expected number
of clusters, E[k], when the expected number of nodes in
a cluster, E[n], is more than 10. The number of nodes in
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Figure 7: “E[k]A versus λ” for different R: 100 m radius circular
deployment area.

a cluster is well above this figure in most of the practical
applications.

Above-presented simulation results and empirical for-
mula derived based on simulation experiments in [18] affirm
the accuracy of using the proposed analytical method in
determining R for given expected number of clusters, E[k]
of DTDC class of algorithms at the network planning stage.

7. Conclusion

Distributed clustering is a popular technique in organiz-
ing ad hoc deployed wireless networks including WSNs.
We found that clustering algorithms like DMAC, HEED,
ANTCLUST, MEDIC, and EDCR can be categorized into the
class of DTDC algorithms based on the common underline
Dutch Auction principle in CH selection resulting in a
similar CH distribution. In this research, we have provided
an analytical framework which can be used to derive the
cluster density, λc, for a given deployment requirement
where each cluster is assumed to be well populated. Fur-
thermore, the analysis framework has been extended to
include the effects of the boundary resulting from a finite
deployment region when computing the expected number
of clusters. The proposed analytical technique was verified
via simulation experiments, and the results were presented.
Further, the empirical formula proposed by Bettstetter in
[18] independently verifies the accuracy of the proposed
technique and vice versa. The authors feel that this analytical
framework can be extended to derive λc for any generic
situation given by Matérn Type III-dependent thinning point
process [20] in future research.
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