Please use this identifier to cite or link to this item: https://rda.sliit.lk/handle/123456789/1099
Title: Quantitative measurement of biological substances in daily-life environment with the little-finger-size one-shot spectroscopic tomography
Authors: Ishida, A
Sato, S
Nakada, S
Suzuki, S
Abeygunawardhana, P. K. W
Wada, K
Nishiyama, A
Ishimaru, I
Keywords: Quantitative measurement
biological substances
daily-life environment
spectroscopic tomography
one-shot spectroscopic imaging
Fourier spectroscopy
Issue Date: 28-Feb-2014
Publisher: International Society for Optics and Photonics
Citation: Akane Ishida, Shun Sato, Sho Nakada, Satoru Suzuki, P. K. W. Abeygunawardhana, Kenji Wada, Akira Nishiyama, Ichiro Ishimaru, "Quantitative measurement of biological substances in daily-life environment with the little-finger-size one-shot spectroscopic tomography," Proc. SPIE 8951, Optical Diagnostics and Sensing XIV: Toward Point-of-Care Diagnostics, 89510Y (28 February 2014); https://doi.org/10.1117/12.2038836
Series/Report no.: Optical Diagnostics and Sensing XIV: Toward Point-of-Care Diagnostics;Volume 8951 Pages 89510Y
Abstract: In daily-life environment, the quantitative measurement of biological substances, such as the blood glucose level in the human skin, is strongly required to realize the non-invasive healthcare apparatus. Fourier-spectroscopic-tomography of the little-finger-size with high time-resolution and with the strong robustness for mechanical vibrations is proposed. The proposed method is a kind of near-common-path interferometer with spatial phase-shift method. We install the transmission-type relative-inclined phase-shifter on the optical Fourier transform plane of the infinity corrected optical system. The phase shifter is constructed with the cuboid and wedge prisms to give the relative phase-shift spatially between each half-flux of the objective beams. The interferograms from each single-bright-point on an objective surface in a line are formed as fringe patterns on 2-dimensional imaging array devices. And because the proposed method is based on the imaging optics, only emitted rays from a focal plane can contribute forming of interferograms. Thus, the measurement plane can be limited onto the focal plane only. From the spectroscopic tomography, only at a localized vessel area in human skins, we can get the pinpointed near-infrared spectroscopic data. And we can expect the improvement of the determination precision, because a Fourier spectroscopic-character is acquired from multiple intensity data in accordance with amount of phase-shift. From the statistical point of view, the gradation of detector is improved with the square root of sample number, based on t-distribution. We constructed the statistical model to assure the determination accuracy, and demonstrated the feasibility of the glucose sensor using liquid cells.
URI: http://rda.sliit.lk/handle/123456789/1099
Appears in Collections:Research Papers - Dept of Computer Systems Engineering
Research Papers - Open Access Research
Research Papers - SLIIT Staff Publications

Files in This Item:
File Description SizeFormat 
89510Y.pdf610.42 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.