Please use this identifier to cite or link to this item: https://rda.sliit.lk/handle/123456789/1631
Title: Comparative analysis of the application of Deep Learning techniques for Forex Rate prediction
Authors: Aryal, S.
Nadarajah, D.
Kasthurirathna, D.
Rupasinghe, L.
Jayawardena, C.
Keywords: Deep Learning
LSTM
CNN
TCN
Series Forecasting
Issue Date: 5-Dec-2019
Publisher: 2019 1st International Conference on Advancements in Computing (ICAC), SLIIT
Abstract: Forecasting the financial time series is an extensive field of study. Even though the econometric models, traditional machine learning models, artificial neural networks and deep learning models have been used to predict the financial time series, deep learning models have been recently employed to do predictions of financial time series. In this paper, three different deep learning models called Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN) and Temporal Convolution Network (TCN) have been used to predict the United States Dollar (USD) to Sri Lankan Rupees (LKR) exchange rate and compared the accuracy of the models. The results indicate the superiority of CNN model over other models. We conclude that CNN based models perform best in financial time series prediction.
Description: Date of Conference: 5-7 Dec. 2019 Date Added to IEEE Xplore: 29 May 2020
URI: http://rda.sliit.lk/handle/123456789/1631
ISBN: 978-1-7281-4170-1/19
Appears in Collections:1st International Conference on Advancements in Computing (ICAC) | 2019
Department of Computer Science and Software Engineering-Scopes
Department of Computer Systems Engineering-Scopes

Files in This Item:
File Description SizeFormat 
Comparative_analysis_of_the_application_of_Deep_Learning_techniques_for_Forex_Rate_prediction.pdf
  Until 2050-12-31
1.05 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.