Please use this identifier to cite or link to this item: https://rda.sliit.lk/handle/123456789/2145
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAshangani, K-
dc.contributor.authorWickramasinghe, K. U-
dc.contributor.authorDe Silva, D. W. N-
dc.contributor.authorGamwara, V. M-
dc.contributor.authorNugaliyadde, A-
dc.contributor.authorMallawarachchi, Y-
dc.date.accessioned2022-05-02T09:29:10Z-
dc.date.available2022-05-02T09:29:10Z-
dc.date.issued2016-10-22-
dc.identifier.citationK. Ashangani, K. U. Wickramasinghe, D. W. N. De Silva, V. M. Gamwara, A. Nugaliyadde and Y. Mallawarachchi, "Semantic video search by automatic video annotation using TensorFlow," 2016 Manufacturing & Industrial Engineering Symposium (MIES), 2016, pp. 1-4, doi: 10.1109/MIES.2016.7779985.en_US
dc.identifier.isbn978-1-5090-3629-5-
dc.identifier.urihttp://rda.sliit.lk/handle/123456789/2145-
dc.description.abstractThe paper discusses a tool for video structure analysis, feature extraction, classification and semantic querying suitable for an extremely broad scale of video data set. The tool analyses the video structure to detect shot boundaries where shots in each video are identified using image duplication techniques. A single frame from each shot is passed to a deep learning model implemented using TensorFlow, that is trained for feature extraction and classification of objects in each frame. Subsequently, an automatic textual annotation is generated for each video and finally with the aid of ontology, semantic searching is done using NLP, which allows receiving an efficient result other than manual video annotation of a large scale dataset. While maintaining accurate querying with automatic video content analysis and annotation with semantic searching with around seventy-four percent accuracy rate, this becomes a useful tool in video tagging and annotation.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofseries2016 Manufacturing & Industrial Engineering Symposium (MIES);Pages 1-4-
dc.subjectSemantic videoen_US
dc.subjectvideo searchen_US
dc.subjectautomatic videoen_US
dc.subjectvideo annotationen_US
dc.subjectTensorFlowen_US
dc.titleSemantic video search by automatic video annotation using TensorFlowen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/MIES.2016.7779985en_US
Appears in Collections:Research Papers - IEEE
Research Papers - SLIIT Staff Publications
Research Publications -Dept of Information Technology

Files in This Item:
File Description SizeFormat 
Semantic_video_search_by_automatic_video_annotation_using_TensorFlow.pdf
  Until 2050-12-31
290.05 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.