Please use this identifier to cite or link to this item: https://rda.sliit.lk/handle/123456789/3141
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMohottala, S-
dc.contributor.authorAbeygunawardana, S-
dc.contributor.authorSamarasinghe, P-
dc.contributor.authorKasthurirathna, D-
dc.contributor.authorAbhayaratne, C-
dc.date.accessioned2023-01-23T10:47:28Z-
dc.date.available2023-01-23T10:47:28Z-
dc.date.issued2022-11-
dc.identifier.citationS. Mohottala, S. Abeygunawardana, P. Samarasinghe, D. Kasthurirathna and C. Abhayaratne, "2D Pose Estimation based Child Action Recognition," TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON), Hong Kong, Hong Kong, 2022, pp. 1-7, doi: 10.1109/TENCON55691.2022.9977799.en_US
dc.identifier.issn21593442-
dc.identifier.urihttps://rda.sliit.lk/handle/123456789/3141-
dc.description.abstractWe present a graph convolutional network with 2D pose estimation for the first time on child action recognition task achieving on par results with LRCN on a benchmark dataset containing unconstrained environment based videos.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofseriesIEEE Region 10 Annual International Conference, Proceedings/TENCON;-
dc.subjectchild action recognitionen_US
dc.subjectgraph convolutional networksen_US
dc.subjectLong-term recurrent convolutional networken_US
dc.subjecttransfer learningen_US
dc.title2D Pose Estimation based Child Action Recognitionen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TENCON55691.2022.9977799en_US
Appears in Collections:Department of Information Technology

Files in This Item:
File Description SizeFormat 
2D_Pose_Estimation_based_Child_Action_Recognition.pdf380.76 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.