Please use this identifier to cite or link to this item: https://rda.sliit.lk/handle/123456789/3142
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWedasingha, N-
dc.contributor.authorSamarasinghe, P-
dc.contributor.authorSingarathnam, D-
dc.contributor.authorPapandrea, M-
dc.contributor.authorPuiatti, A-
dc.contributor.authorSeneviratne, L-
dc.date.accessioned2023-01-23T10:54:32Z-
dc.date.available2023-01-23T10:54:32Z-
dc.date.issued2022-11-04-
dc.identifier.citationN. Wedasingha, P. Samarasinghe, D. Singarathnam, M. Papandrea, A. Puiatti and L. Seneviratne, "Child Head Gesture Classification through Transformers," TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON), Hong Kong, Hong Kong, 2022, pp. 1-6, doi: 10.1109/TENCON55691.2022.9977990.en_US
dc.identifier.issn21593442-
dc.identifier.urihttps://rda.sliit.lk/handle/123456789/3142-
dc.description.abstractThis paper proposes a transformer network for head pose classification (HPC) which outperforms the existing SoA for HPC. This robust model is then extended to overcome the limited child data challenge by applying transfer learning resulting in an accuracy of 95.34% for child HPC in the wild.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofseriesIEEE Region 10 Annual International Conference, Proceedings/TENCON;-
dc.subjectHead Pose Estimationen_US
dc.subjectLogistic Regressionen_US
dc.subjectSVMen_US
dc.subjectTransfer Learningen_US
dc.subjectTransformeren_US
dc.titleChild Head Gesture Classification through Transformersen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TENCON55691.2022.9977990en_US
Appears in Collections:Department of Information Technology

Files in This Item:
File Description SizeFormat 
Child_Head_Gesture_Classification_through_Transformers.pdf
  Until 2050-12-31
780.84 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.