Please use this identifier to cite or link to this item: https://rda.sliit.lk/handle/123456789/3637
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAmarasinghe, I.S-
dc.date.accessioned2024-01-23T11:09:19Z-
dc.date.available2024-01-23T11:09:19Z-
dc.date.issued2023-11-01-
dc.identifier.citationIndika Shameera Amarasinghe. (2023). On Ptolemy’s Theorem and Related Derivatives. Proceedings of SLIIT International Conference on Advancements in Sciences and Humanities, 1-2 December, Colombo, pages 302-308.en_US
dc.identifier.issn2783-8862-
dc.identifier.urihttps://rda.sliit.lk/handle/123456789/3637-
dc.description.abstractIn this paper an Euclidean Geometric proof is presented for the Ptolemy’s Theorem of cyclic quadrilaterals by using a generalized identity with respect to a cevian of a triangle. Furthermore, a proof for the converse of the Ptolemy’s Theorem is also presented, while adducing some significant applications, new corollaries and lemmas of Ptolemy’s Theorem and its converse.en_US
dc.language.isoenen_US
dc.publisherFaculty of Humanities and Sciences, SLIITen_US
dc.relation.ispartofseriesProceedings of the 4th SLIIT International Conference on Advancements in Sciences and Humanities;-
dc.subjectCyclic quadrilateralsen_US
dc.subjectEquilateral trianglesen_US
dc.subjectMathe matical logicen_US
dc.subjectPerpendicularsen_US
dc.subjectSimilar trianglesen_US
dc.titleOn Ptolemy’s Theorem and Related Derivativesen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.54389/HBZJ1870en_US
Appears in Collections:Proceedings of the SLIIT International Conference on Advancements in Science and Humanities2023 [ SICASH]

Files in This Item:
File Description SizeFormat 
331-337 On Ptolemys.pdf1.63 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.