Please use this identifier to cite or link to this item: https://rda.sliit.lk/handle/123456789/1043
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFernando, Y. P. N-
dc.contributor.authorGunasekara, K. D. B-
dc.contributor.authorSirikumara, K. P-
dc.contributor.authorGalappaththi, U. E-
dc.contributor.authorThilakarathna, T-
dc.contributor.authorKasthurirathna, D-
dc.date.accessioned2022-02-09T04:28:54Z-
dc.date.available2022-02-09T04:28:54Z-
dc.date.issued2021-09-07-
dc.identifier.citationY. P. N. Fernando, K. D. B. Gunasekara, K. P. Sirikumara, U. E. Galappaththi, T. Thilakarathna and D. Kasthurirathna, "Computer Vision Based Privacy Protected Fall Detection and Behavior Monitoring System for the Care of the Elderly," 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA ), 2021, pp. 01-07, doi: 10.1109/ETFA45728.2021.9613448.en_US
dc.identifier.isbn978-1-7281-2989-1-
dc.identifier.urihttp://rda.sliit.lk/handle/123456789/1043-
dc.description.abstractThe elderly population constitutes a large percentage of the society hence making elderly care a top priority. Falls have been identified as a leading issue among major problems faced by them. Concerning this, many monitoring devices have been developed, most of them focusing solely on one specific health care aspect or related to fall detection, and are based on sensors and wearable devices which are usually uncomfortable for daily use. Considering these aspects, the solution proposed in this research is a real time computer vision-based system that monitors behavior and detects anomalies through deep learning. The monitoring is mainly focused on detecting unusual behavior including falls, and monitoring routine activities to detect deviations. A device approach is used to deploy the deep learning models and consists of IP camera-based monitoring which uses a special privacy protected procedure that ensures the detection is done based on meta data and therefore no camera image or footage is stored. The research is mainly focused on four major components which are user identification, fall detection, routine variance detection and device configuration.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofseries2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA);Pages 01-07-
dc.subjectComputer Vision Baseden_US
dc.subjectPrivacy Protecteden_US
dc.subjectFall Detectionen_US
dc.subjectBehavior Monitoring Systemen_US
dc.titleComputer Vision Based Privacy Protected Fall Detection and Behavior Monitoring System for the Care of the Elderlyen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ETFA45728.2021.9613448en_US
Appears in Collections:Research Papers - IEEE
Research Papers - SLIIT Staff Publications



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.